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These are the lecture notes to my 2nd year Bachelor lecture in the summer semester
2013 on complex analysis in one variable. The manuscript differs from the lecture: It
does not contain any pictures, and the lecture is in German.
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1 Holomorphic maps

(A) Complex numbers and complex vector spaces

Reminder 1.1.
(1) C is a field, and R is a subfield. Let C× := C \ {0}.
(2) Every z ∈ C has a unique representation z = x + iy with x = Re(z) ∈ R the real

part of z, y = Im(z) ∈ R the imaginary part of z and with i ∈ C such that i2 = −1.
We denote by

|z| :=
√
x2 + y2 ∈ R≥0

the absolute value of z and by

z̄ := x− iy ∈ C

the complex conjugate of z.
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(3) For z, w ∈ C one has

|z| = 0⇔ z = 0,
|z + w| ≤ |z|+ |w|,

}
(⇒ (C, | |) is normed R-vector space)

|zw| = |z||w|.

(4) Every z ∈ C× has a unique expression of the form

z = reiϕ,

where r = |z| ∈ R>0 and ϕ ∈ [0, 2π) = R/2πZ is the argument of z.

Remark 1.2. Let V be a finite-dimensional C-vector space. Recall that all norms on
V are equivalent and hence define the same topology. We always endow V with this
topology.
If V = Cn, then a subset U ⊆ V is open if and only if for all z = (z1, . . . , zn) ∈ U there
exists ε > 0 such that

Bε(z) := {w ∈ Cn ; |wi − zi| < ε for all i = 1, . . . , n} ⊆ U.

Remark 1.3. Let V , W be C-vector spaces.
(1) We may V also consider as an R-vector space with

dimR(V ) = 2 dimC(V ),

where 2 · ∞ :=∞.
(2) For a map A : V →W we have

A is C-linear⇔ A is R-linear and A(iv) = iA(v) for all v ∈ V

We denote the C-linear maps V → W by HomC(V,W ) and the R-linear maps
V →W by HomR(V,W ).

(B) Complex differentiable maps

Notation: Let V , V ′ be always finite-dimensional C-vector spaces.

Definition 1.4. U ⊆ V open, f : U → V ′ a map.
(1) Let z̃ ∈ U . Then f is called complex differentiable in z̃ if there exists a C-linear

map
Df(z̃) : V → V ′

such that

(1.4.1) lim
z→z̃

f(z)− f(z̃)−Df(z̃)(z − z̃)
||z − z̃||

= 0,

where || · || is any norm on V .
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(2) f is called holomorphic on U if f is continuously complex differentiable on U , i.e.
f is complex differentiable in all z̃ ∈ U and the map

U → HomC(V, V ′), z̃ 7→ Df(z̃)

is continuous.
(3) We set

O(U, V ′) := { f : U → V ′ ; f holomorphic},
O(U) := O(U,C).

Remark 1.5. U ⊆ V open, f : U → V ′ a map. Then f is complex differentiable in z̃ if
and only if f is differentiable in z̃ (in the sense of real analysis) and the R-linear map
Df(z̃) : V → V ′ is C-linear. In particular the results of Analysis 2 show:
(1) Df(z̃) is uniquely determined by (1.4.1).
(2) If f is complex differentiable in z̃, then f is continuous in z̃.
(3) f is holomorphic in U ⇔ f is a C1-map and Df(z̃) is C-linear for all z̃ ∈ U .

Proposition 1.6 (Chain rule). V , V ′, V ′′ finite-dimensional C-vector spaces, U ⊆ V ,
U ′ ⊆ V ′ open. Let f : U → V ′, g : U ′ → V ′′ holomorphic with f(U) ⊆ U ′. Then
g ◦ f : U → V ′′ is holomorphic and for all z̃ ∈ U :

D(g ◦ f)(z̃) = Dg(f(z̃)) ◦Df(z̃).

Proof. This follows immediately from 1.5 and the analogous assertion for real differen-
tiable maps (because the composition of C-linear maps is again C-linear).

Example 1.7.
(1) An R-linear map A : V → V ′ is holomorphic if and only if A is C-linear: One has

DA(z̃) = A for all z̃ ∈ V .
(2) The R-linear map C→ C, z 7→ z̄ is not holomorphic.
(3) The addition V ⊕ V → V , (z, w) 7→ z + w and the i-th projection Cn → C,

(z1, . . . , zn) 7→ zi (i ∈ {1, . . . , n}) are C-linear and hence holomorphic.
(4) The multiplication µ : C⊕ C→ C, (z, w) 7→ zw is a C1-map with

Dµ(z̃, w̃) : C2 → C, (u, v) 7→ uw̃ + vz̃

for all (z̃, w̃) ∈ C2. Hence Dµ(z̃, w̃) is C-linear and µ is holomorphic.
(5) Applying the chain rule, (3) and (4) several times we see that polynomial mappings

Cn → C, (z1, . . . , zn) 7→
∑

i1,...,in∈N0

ai1...inz
i1
1 . . . zinn

(where ai1...in ∈ C is zero for all but finitely many i1, . . . , in) are always holomorphic.

Corollary 1.8. Let U ⊆ V open.
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(1) O(U, V ′) is a C-subvectorspace of the space of all maps U → V ′. For f, g ∈
O(U, V ′), α ∈ C one has

D(αf + g)(z̃) = αDf(z̃) +Dg(z̃).

(2) Let f, g : U → C be holomorphic. Then the product fg : U → C is holomorphic and
for z̃ ∈ U one has (by Example 1.7 (4) and the chain rule):

D(fg)(z̃) = f(z̃)Dg(z̃) + g(z̃)Df(z̃).

In particular, O(U) is a commutative C-algebra.

Theorem 1.9 (Inverse Function). Let U ⊆ V open and let f : U → V ′ be holo-
morphic. Let z̃ ∈ U such that Df(z̃) : V → V ′ is invertible. Then there exist open
neighborhoods z̃ ∈ W ⊆ V and f(z̃) ∈ W ′ ⊆ V ′ such that f |W : W → W ′ is bijective
and such that g := (f |W )−1 : W ′ → V is holomorphic.

Proof. The real analogue of the inverse function theorem implies the existence of W
and W ′ such that g is a C1-map with Dg(z̃′) = Df(g(z̃′))−1 for all z̃′ ∈W ′. Therefore
Dg(z̃′) is C-linear for all z̃ ∈W ′. Hence g is holomorphic.

Theorem 1.10. Let U ⊆ V be open. The following assertions are equivalent for a map
f : U → V ′:
(i) f is holomorphic.
(ii) f is complex differentiable in z̃ for all z̃ ∈ U .
(iii) f is analytic, i.e., locally given by a power series.1

(iv) For all z̃ ∈ U , f is partially complex differentiable in z̃ (i.e., there exists a basis
(e1, . . . , en) of V such that for some ε > 0 the maps

{ t ∈ C ; |t| < ε } → V ′, t 7→ f(z̃ + tei)

are complex differentiable for all i = 1, . . . , n).

Analogous equivalences for real differentiable functions are completely wrong!

Proof. We will give a full proof of this theorem only for V = V ′ = C in Section 5.
Here we only briefly indicate how one could proceed. Note that “(i) ⇒ (ii) ⇒ (iv)” are
trivial. In fact, (ii) implies that (iv) holds for every basis (e1, . . . , en).
1st step: Show that one can assume that V ′ = C. This is easy: By choosing a linear
isomorphismus V ′ ∼= Cm we may assume that V ′ = Cm. Then f = (f1, . . . , fm) with
fj : U → C. Then check that each assertion holds for f if and only if it holds for all fj .
2nd step: Prove that all assertions are equivalent if V = V ′ = C (note that in this
case one trivially has “(ii) ⇔ (iv)”, and “(iii) ⇒ (i)” has essentially already shown in
Analysis 1. Thus it suffices to show “(ii)⇒ (i)⇒ (iii)”. This will be done in Section 5.
3rd step: The second step shows “(iv) ⇔ (iii)”. Hence it remains to show that “(iv) ⇒
(i)”. This a deep theorem due to Hartogs (see e.g.: L. Hörmander: An introduction to
complex analysis in several variables, Theorem 2.2.8).

1We leave this assertion deliberately vague.
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(C) Holomorphy in one variable

Notation: In this subsection we identify C ∼→ R2, z 7→ (x, y), where x = Re(z),
y = Im(z).

Remark 1.11. An R-linear map A : C → C given by a matrix

(
a b
c d

)
∈ M2(R) is

C-linear if and only if A(iz) = iA(z) for all z ∈ C. But the multiplication with i is

given by the matrix

(
0 −1
1 0

)
(i is the rotation by π/2). Hence A is C-linear if and

only if (
a b
c d

)(
0 −1
1 0

)
=

(
0 −1
1 0

)(
a b
c d

)
⇔ a = d, b = −c.

In this case one has:

(1.11.1) A : C→ C, z 7→ (a+ ic)z.

Proposition 1.12. Let U ⊆ C be open, let f : U → C be a map, and let z̃ ∈ U . Then
the following assertions are equivalent.
(i) f is complex differentiable in z̃.
(ii) f is real differentiable (as a map f : R2 ⊇ U → R2) and f satisfies the Cauchy-

Riemann equations:

(1.12.1)
∂Re(f)

∂x
(z̃) =

∂Im(f)

∂y
(z̃),

∂Im(f)

∂x
(z̃) = −∂Re(f)

∂y
(z̃).

(iii) The limit

(1.12.2) f ′(z̃) := lim
h→0

h∈C\{0}

f(z̃ + h)− f(z̃)

h

exists.
In this case Df(z̃) is the linear map C→ C, z 7→ f ′(z̃)z and we usually call f ′(z̃) the
(complex) derivative of f in z̃. Moreover we have:

(1.12.3) f ′ =
∂Re(f)

∂x
+ i

∂Im(f)

∂x

(1.12.1)
=

∂Im(f)

∂y
− i∂Re(f)

∂y
.

Proof. “(i) ⇔ (ii)”: Follows from Remark 1.11 because Df(z̃) is given by the matrix

Df(z̃) =

(
∂Re(f)
∂x

∂Re(f)
∂y

∂Im(f)
∂x

∂Im(f)
∂y

)
.

“(i) ⇔ (iii)”: f is complex differentiable in z̃
⇔ ∃ C-linear map A : C→ C such that

0 = lim
z→z̃

f(z)− f(z̃)−A(z − z̃)
|z − z̃|

6



⇔ ∃ a ∈ C such that

0 = lim
z→z̃

f(z)− f(z̃)− a(z − z̃)
z − z̃

= (lim
z→z̃

f(z)− f(z̃)

z − z̃
)− a.

Finally (1.12.3) follows from (1.11.1).

Corollary 1.13. U ⊆ C open, f : U → C. Then f is holomorphic, if (1.12.2) exists
for all z̃ ∈ U and if f ′ : U → C is continuous.

We will see that the continuity of f ′ is automatic.

Example 1.14.
(1) Let n ∈ N0 and let f : C→ C, f(z) = zn. Then

f ′(z) = nzn−1

(same proof as in the real case; alternatively use product rule and induction by n).
Hence the linearity of the derivative shows that for a0, . . . , an ∈ C and p : C → C,
p(z) = anz

n + · · ·+ a1z + a0 one has

p′(z) = nanz
n−1 + · · ·+ a1.

(2) The same proof as in real analysis shows: Let U ⊆ C be open, f, g : U → C be
holomorphic with g(z) 6= 0 for all z ∈ U . Then

f

g
: U → C, z 7→ f(z)

g(z)

is holomorphic, and (
f

g

)′
(z) =

f ′(z)g(z)− f(z)g′(z)

g(z)2

for z ∈ U . In particular
(zn)′ = nzn−1

for n ∈ Z and z ∈ C×.

Proposition 1.15. Let U ⊆ C be open, f : U → C holomorphic. Then the following
assertions are equivalent.
(i) f ′(z) = 0 for all z ∈ U .
(ii) f is locally constant.
(iii) Re(f) : U → R is locally constant.
(iv) Im(f) is locally constant.
(v) |f | : U → R≥0 is locally constant.
(vi) f̄ : U → C, f̄(z) := f(z) is holomorphic.

Recall: X topological space, M set, t : X →M map. Then:

t locally constant

:⇔ ∀x ∈ X ∃x ∈ U ⊆ X open, such that t|U is constant

⇔ t is continuous, if we endow M with the discrete topology
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Proof. “(i) ⇔ (ii)”: This has been proved in Analysis 2.
“(ii) ⇒ (iii) – (vi)”: Obvious.
“(iii) ⇒ (i)”:

Re(f) locally constant⇒ Re(f)

∂x
=

Re(f)

∂y
= 0

CR equation⇒ f ′ = 0.

“(iv) ⇒ (i)”: Same argument.
“(vi)⇒ (iii)”: f , f̄ holomorphic⇒ u := Re(f) = (f+f̄)/2 holomorphic. But Im(u) = 0
and thus we can apply “(iv) ⇒ (ii)” for u instead of f to see that u is locally constant.
“(v) ⇒ (vi)”: Clear if f = 0. As |f | is locally constant we can assume that f(z) 6= 0
for all z ∈ U . Then: 1/f is a holomorphic function ⇒ f̄ = |f |2/f holomorphic.

2 Path integrals

(A) Vector valued 1-forms

Notation: In this section we denote by V and W finite-dimensional R-vector spaces.
Later we will be mainly interested in the case V = W = C.

Definition 2.1. Let U ⊆ V be a subset. A W -valued 1-form on U is a map

ω : U → HomR(V,W ).

Note that it makes sense to say that ω is continuous. Moreover if U ⊆ V is open, then
it makes sense to say that ω is a Ck-map (k ∈ N0 ∪ {∞}).

In the language of “Reelle Analysis” it would have been better to define that ω is a
map that sends p ∈ U to an alternating 1-multilinear form ω(p) : Tp(U) → W and to
remark that Tp(U) = V for all p ∈ U .

Example 2.2. Let U ⊆ V be open and let F : U → W be real differentiable. Then
dF := DF is a W -valued 1-form (DF (p) ∈ HomR(V,W ) for all p ∈ U).

Remark 2.3 (Coordinates). We now assume V = Rm. For i = 1, . . . ,m we call

xi : Rm → R, (p1, . . . , pm) 7→ pi

the coordinate functions.
Then xi is R-linear and dxi(p) = xi ∈ HomR(Rm,R) for all p ∈ Rm. Hence for all
p ∈ Rm, (dx1(p), . . . , dxm(p)) is a basis of HomR(Rm,R) and for every R-valued 1-form
ω on U ⊆ Rm we have

ω(p) = f1(p)dx1(p) + · · ·+ fm(p)dxm(p)

for unique functions fi : U → R.
More generally, every α ∈ HomR(Rm,W ) is of the form α = w1dx

1(p)+ · · ·+wmdxm(p)
for unique w1, . . . , wm ∈W , where

widx
i(p) : Rm →W, y = (y1, . . . , ym) 7→ dxi(p)(y)wi = yiwi.
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Hence every W -valued 1-form ω on U ⊆ Rm is of the form

ω = f1dx
1 + · · ·+ fmdx

m

for unique functions fi : U →W und we have

(2.3.1) (fidx
i)(p)(y1, . . . , ym) = yifi(p).

Moreover (k ∈ N0 ∪ {∞}):

ω is a Ck 1-form⇔ f1, . . . , fm are Ck maps.

Remark 2.4. Let V = Rm, U ⊆ Rm open, F : U → W real differentiable. Then one
has

dF =
∂F

∂x1
dx1 + · · ·+ ∂F

∂xm
dxm,

where ∂F
∂xi

: U →W denotes the i-th partial derivative of F .

Definition 2.5. Let U ⊆ Rm be open and let ω =
∑m

i=1 fjdx
j : U → HomR(V,W ) be

a W -valued 1-form.
(1) ω is called exact if there exists a real differentiable function F : U → W such that

ω = dF .
(2) ω is called closed if ω is continuously differentiable and for all i, j ∈ {1, . . . ,m} one

has
∂fi
∂xj

=
∂fj
∂xi

.

Proposition 2.6. Let U ⊆ Rm offen and let ω be a continuously differentiable W -
valued 1-form on U . Then:

ω exact⇒ ω closed.

Proof. This has been proved in Analysis 2: It is a direct calculation: As ω is exact,
ω = dF for a C2-map F : U →W . And we know from Analysis 2 that

∂2F

∂xi∂xj
=

∂2F

∂xj∂xi
.

(B) Path integrals

Notation: Let a, b ∈ R, a < b. Let V be a finite-dimensional R-vector space, W = Rn,
n ∈ N.

Definition 2.7.
(1) Let X be a topological space. A continuous map γ : [a, b] → X is called path in

X (German: Weg in X). The point γ(a) is called the startpoint, γ(b) is called the
endpoint of γ. We say that γ is a path from γ(a) to γ(b). We also set:

{γ} := γ([a, b]) ⊆ X.
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(2) The path γ is called closed or a loop (German: Schleife), if γ(a) = γ(b).
(3) A path γ : [a, b]→ X is called constant, if there exists x0 ∈ X such that γ(t) = x0

for all t ∈ [a, b]. We then denote γ by εx0 .
(4) Let X = V . A path γ : [a, b]→ V is called Ck, if

(a) γ|(a,b) is a Ck-map. For l ≤ k we denote by γ(l) : (a, b)→ V its l-th derivative.
(b) For all l ∈ N with l ≤ k the limits

γ(l)(a) := lim
t↘a

γ(l)(t), and γ(l)(b) := lim
t↗b

γ(l)(t)

exist.
(5) A path γ : [a, b]→ V is called piecewise Ck if there exist a = t0 < t1 < · · · < tr = b

such that γ|[ti−1,ti] is a Ck-path for all i = 1, . . . , r.

Definition 2.8. Let γ : [a, b] → V be a C1-path. Let ω : {γ} → Hom(V,W ) be a
continuous 1-form. Define

∫
γ

ω :=

b∫
a

ω(γ(t))(γ′(t)) dt

=

∫
[a,b]

γ∗ω

 2 ∈W.

Here we calculate the integral for every component of W .
More generally, if γ is piecewise C1 with a = t0 < t1 < · · · < tr = b such that γ|[ti−1,ti]

is a C1-path, then set ∫
γ

ω :=

r∑
i=1

∫
γ|[ti−1,ti]

ω.

If S ⊆ V with {γ} ⊆ S and ω : S → Hom(V,W ) continuous, we write
∫
γ ω instead of∫

γ ω|{γ}.

Example 2.9. Let x ∈ V and let εx : [a, b] → U be the constant path with value x.
Then ε′x(t) = 0 for all t ∈ [a, b] and hence∫

εx

ω = 0

for all ω.

Remark 2.10. Let γ : [a, b]→ U be a piecewise C1-path and let ω, η : {γ} → Hom(V,W )
be a continuous 1-forms.
(1) For all λ ∈ R one has

(*)

∫
γ

(λω + η) = λ

∫
γ

ω +

∫
γ

η.

If W is a C-vector space, (*) holds also for λ ∈ C.

2In the language of “Reelle Analysis”
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(2) Let c, d ∈ R with c < d and let ϕ : [c, d]→ [a, b] be C1 and bijective with ±ϕ′(t) ≥ 0
for all t ∈ [c, d]. Then ∫

γ◦ϕ

ω = ±
∫
γ

ω.

Proof. This has been proved in Analysis 2.

Example 2.11. Let γ : [a, b] → V = Rm, t 7→ (γ1(t), . . . , γm(t)) be a C1-path. Let
ω =

∑m
i=1 fidx

i a W -valued 1-form with fi : {γ} →W continuous. Then

∫
γ

ω =

b∫
a

ω(γ(t))(γ′(t)) dt

=

b∫
a

m∑
i=1

(fidx
i)(γ(t))(γ′(t)) dt

(2.3.1)
=

b∫
a

m∑
i=1

γ′i(t)fi(γ(t)) dt.

Example 2.12. Let W = C, V = R2 with coordinates x and y. Consider the 1-form
on R2 \ {0}

ω =
1

x+ iy
(dx+ idy) =

(x− iy)dx+ (y + ix)dy

x2 + y2
.

Let γ : [0, 2π]→ R2, t 7→ (cos t, sin t). Then one has∫
γ

ω =

2π∫
0

(− sin(t)(cos(t)− i sin(t)) + cos(t)(sin(t) + i cos(t))) dt

=

2π∫
0

i(sin2(t) + cos2(t)) dt

= 2πi.

Remark 2.13. Let γ : [a, b]→ V be a path. Let ϕ : [0, 1]→ [a, b], ϕ(t) = a+ (b− a)t.
Then:

γ (piecewise) Ck ⇔ γ ◦ ϕ : [0, 1]→ V (piecewise) Ck.
Moreover

∫
γ ω =

∫
γ◦ϕ ω (if γ is piecewise C1, ω continuous W -valued 1-form).

Upshot: Can usually assume that paths are defined on [0, 1].

Definition 2.14. Let X be a topological space.
(1) Let γ : [0, 1]→ X be a path. Define

γ− : [0, 1]→ X, γ−(t) = γ(1− t)

the inverse path.
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(2) Let γ, δ : [0, 1]→ X be two paths with γ(1) = δ(0). Define a path

γ · δ : [0, 1]→ X, t 7→

{
γ(2t), 0 ≤ t ≤ 1/2;

δ(2t− 1), 1/2 ≤ t ≤ 1.

Remark 2.15. Let γ, δ : [0, 1]→ V piecewise C1-paths. Then Remark 2.10 shows∫
γ−

ω = −
∫
γ

ω, for all ω : {γ} → Hom(V,W ) continuous,

∫
γ·δ

ω =

∫
γ

ω +

∫
δ

ω, for all ω : {γ} ∪ {δ} → Hom(V,W ) continuous,

where for the second equality we also assume that γ(1) = δ(0).

Proposition 2.16. Let U ⊆ V be open, F : U → W a C1-map, and let γ : [a, b] → U
be a piecewise C1-path. Then ∫

γ

dF = F (γ(b))− F (γ(a)).

In particular
∫
γ ω = 0 if ω is a continuous exact 1-form on U and γ is closed.

Proof. This has been proved in Analysis 2.

Example 2.17. Let V = R2 with coordinates x and y, and let W = C.
(1) (Stupid example) The 1-form ω = (x+ iy2)dx+ x3dy on R2 is not closed: Set

fx : R2 → C, fx(x, y) = x+ iy2;

fy : R2 → C, fy(x, y) = x3.

Then
∂fx
∂y

(x, y) = 2iy,
∂fy
∂x

(x, y) = 3x2.

(2) (Intelligent example) The 1-form on R2 \ {0} (already considered in Example 2.12)

ω =
1

x+ iy
(dx+ idy)

is closed (easy calculation or see 4.2), but we have seen in Example 2.12 that∫
γ ω 6= 0 for the closed path γ : [0, 2π]→ C, t 7→ (cos t, sin t). This shows that ω is

not exact (Proposition 2.16).

12



(C) Limits and Integral

Definition 2.18. Let X be a topological space, (Y, d) metric space. Let (fn)n be a
sequence of functions fn : X → Y , and let f : X → Y . One says that
(1) (fn)n converges locally uniformly to f , if for all x ∈ X there exists x ∈ U ⊆ X open

such that
sup
x∈U

d(fn(x), f(x))
n→∞−→ 0,

i.e., (fn|U )n converges uniformly to f |U .
(2) (fn)n converges compactly to f , if for every compact subspace K of X one has

sup
x∈K

d(fn(x), f(x))
n→∞−→ 0,

i.e., (fn|K)n converges uniformly to f |K .

Remark 2.19. Notation as in Definition 2.18.
(1) If (fn)n converges locally uniformly to f , then (fn)n converges compactly to f

(every compact set K can be covered by finitely many U ’s as above).
(2) Now assume that X ⊆ Rd open (d ∈ N). If (fn)n converges compactly to f , then

(fn)n converges locally uniformly to f (∀ x ∈ X ∃ x ∈ U ⊆ K ⊆ X with U ⊆ X
open and K compact).

Assertion (2) holds more generally, if X is locally compact.
Upshot: For X ⊆ Rd open (or, more generally, for X locally compact) locally uniform
convergence and compact convergence are equivalent.

Proposition 2.20. Let S ⊆ V be a subspace, let γ : [a, b]→ V be a piecewiese C1-path
with {γ} ⊆ S. Let (ωn)n∈N be a sequence of continuous 1-forms ωn : S → HomR(V,W )
which converge locally uniformly to a 1-form ω : S → HomR(V,W ). Then ω is contin-
uous, and

lim
n→∞

∫
γ

ωn =

∫
γ

ω.

Proof. By Analysis 2 we already know that ω is continuous. As (ωn)n converges locally
uniformly and γ′ is bounded, (t 7→ ωn(γ(t))γ′(t))n converges locally uniformly and
hence uniformly because [a, b] is compact. Hence the claim follows that the integral
commutes with uniform limit of functions (Analysis 1).

(D) Digression: Connected and path-connected spaces

Definition 2.21. Let X 6= ∅ be a topological space.
(1) X is called connected if for every open and closed ∅ 6= Z ⊆ X one has X = Z.
(2) X is called path-connected if for all x, y ∈ X there exists a continuous path

γ : [0, 1]→ X with γ(0) = x and γ(1) = y.
Warning : According to this definition the empty space is not connected.

Proposition 2.22.
(1) Every path-connected toplogical space is connected.
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(2) Let V be finite-dimensional R-vector space, U ⊆ V be open and connected. Then
for any x, y ∈ U there exists a piecewise C∞-path γ : [0, 1] → U with γ(0) = x and
γ(1) = y. (In particular: U is path-connected.)

Hence we see that if U ⊆ V open, V finite-dimensional R-vector space, then:

U connected⇔ U path-connected.

In general there exist connected topological spaces (even subspaces of R2) which are
not path-connected.

Proof. This has been proved in Analysis 2.

Definition 2.23. An open (path-)connected subspace of a finite-dimensional R-vector
space is called domain (German: Gebiet).

Proposition 2.24. Let ∅ 6= X be a topological space. Then X is connected if and only
if for every set M every locally constant map t : X →M is constant.

Proof. Let X be connected. Choose x ∈ X. If t is locally constant, then t−1(t(x)) is
open and closed in X and hence = X. Therefore t(y) = t(x) for all y ∈ X.
Conversely, assume that X is not connected. Then there exists ∅ 6= Y ( X open and
closed. Hence the characteristic function of Y

χY : X → {0, 1}, x 7→

{
1, x ∈ Y ;

0, x /∈ Y

is locally constant but not constant.

Remark 2.25. Let f : X → Y be a continuous surjective map of topological spaces.
If X is (path-)connected, then Y is (path-)connected.

Proof. “X connected ⇒ Y connected”: ∅ 6= Z ⊆ Y open and closed ⇒ f−1(Z) open
and closed (because f is continuous) and f−1(Z) 6= ∅ (because f is surjective). As X
is connected, f−1(Z) = X. Hence

Z
f surjective

= = f(f−1(Z)) = f(X) = Y.

“X path-connected ⇒ Y path-connected”: Let y, y′ ∈ Y .
f surjective ⇒ ∃ x, x′ ∈ X with f(x) = y and f(x′) = y′. Hence

X path-connected⇒ ∃ γ : [0, 1]→ X continuous with γ(0) = x, γ(1) = x′

⇒ f ◦ γ : [0, 1]→ Y continuous with f(γ(0)) = y, f(γ(1)) = y′.

Remark and Definition 2.26. Let X be a topological space. Define on X the relation

x ∼ y ⇔ ∃ γ : [0, 1]→ X path such that γ(0) = x, γ(1) = y.

This is an equivalence relation and the equivalence classes are called the path compo-
nents of X (i.e., x, y ∈ X are in the same path-component if and only if x and y can
be connected by a path). The set of path components of X is denoted by π0(X).
Every path-component is path-connected.

14



Proposition 2.27. Let V be finite-dimensional R-vector space, let X ⊆ V be open,
and let Z ⊆ X be a path-component. Then Z is open and closed in X.

For an arbitary topological space X a path component of X is in general neither open
nor closed.

Proof. As X is open in a finite-dimensional R-vector space, every point z ∈ Z has an
open path-connected neighborhood U (e.g., some small open ball) in X. Hence U ⊆ Z.
This shows that Z is open. Hence

X \ Z =
⋃

Z′ 6= Z path-comp. of X

Z ′

is also open.

The same proof is valid for every topological space X such that for all x ∈ X there
exists an open path-connected neighborhood of X.

(E) Existence of primitives

The following result gives criteria for a 1-form ω to be exact, i.e. to answer the question,
when a function F exists with dF = ω (a primitive (German: Stammfunktion) of ω).

Theorem 2.28. Let V be finite-dimensional R-vector space, W = Rn. Let U ⊆ V
be open, ω : U → Hom(V,W ) a continuous 1-form. Then the following assertions are
equivalent:
(i) ω is exact.
(ii) For all x, y ∈ U we have: Given piecewise C1-paths γi : [ai, bi] → U , i = 1, 2 with

γ1(a1) = γ2(a2) = x and γ1(b1) = γ2(b2) = y. Then∫
γ1

ω =

∫
γ2

ω.

(iii) For every closed piecewise C1-path γ : [a, b]→ U one has∫
γ

ω = 0.

Proof. Replacing U by its path-components, we may assume that U is a domain. Then
the result has been proved in Analysis 2 for W = R. The proof in the general case is
the same.
Recall that for the essential step “(ii) ⇒ (i)” one obtains F : U → W as follows. Fix
x0 ∈ U and define

F : U →W, F (x) :=

x∫
x0

ω :=

∫
γ

ω,

where γ is any piecewise C1-path with startpoint x0 and endpoint x. This is well defined
by (ii). One has dF = ω (!).
Note that “(i) ⇒ (ii)” is a direct consequence of Proposition 2.16.
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3 Homotopy

(A) Homotopy and simply connected spaces

Notation: Let X be a topological space, a, b ∈ R, a < b.

Definition 3.1. Let γ0, γ1 : [a, b]→ X paths.
(1) Assume that γ0(a) = γ1(a) and γ0(b) = γ1(b). A homotopy of γ0 and γ1 in X is a

continuous map H : [a, b]× [0, 1]→ X such that
(a) H(t, 0) = γ0(t) for all t ∈ [a, b],

H(t, 1) = γ1(t) for all t ∈ [a, b].
(b) H(a, s) = γ0(a) = γ1(a), H(b, s) = γ0(b) = γ1(b) for alle s ∈ [0, 1].
Thus for all s ∈ [0, 1] the paths γs : [a, b] → X, t 7→ H(t, s) have all the same
endpoints as γ0 and γ1.
If there exists a homotopy H of γ0 and γ1 in X, we call γ0 and γ1 homotopic. We
then write γ ' δ or H : γ ' δ.

(2) Assume that γ0 and γ1 are loops (but not necessarily with same endpoints). A
loop homotopy of γ0 and γ1 in X is a continuous map H : [a, b] × [0, 1] → X such
that
(a) H(t, 0) = γ0(t) for all t ∈ [a, b],

H(t, 1) = γ1(t) for all t ∈ [a, b].
(b) H(a, s) = H(b, s) for alle s ∈ [0, 1].
Thus for all s ∈ [0, 1] the paths γs : [a, b] → X, t 7→ H(t, s) are loops (but the
endpoints may change).
If there exists a loop homotopy H of γ0 and γ1 in X, we call γ0 and γ1 loop
homotopic.

(3) A path γ : [a, b] → X is called null-homotopic in X if it is homotopic in X to a
constant path (⇒ γ is a loop).

Example 3.2. Let γ : [0, 2π] → C, γ(t) = eit. Then γ is a C∞-loop in C. We will
see that γ is null-homotopic in C (Remark 3.9 will show that all loops in C are null-
homotopic in C) but that γ is not null-homotopic in C× (this will follow from Theo-
rem 3.12 and Example 2.17 (2)). Note that this is graphically clear.

Remark 3.3. Let C([a, b], X) be the set of all paths [a, b] → X. Then the relation
“homotopic” ' is an equivalence relation on C([a, b], X).
The relation “loop homotopic” on the sets of all loops in X is an equivalence relation.

Proof. Let us show that ' is an equivalence relation (the proof for “loop homotopic”
is the same). Reflexivity: Clear
Symmetry: H homotopy of γ and δ. Then

H− : [a, b]× [0, 1], H−(t, s) := H(t, 1− s)

is a homotopy of δ and γ.
Transitivity: Let H ′ : γ ' δ, H ′′ : δ ' ε. Then

H : [a, b]× [0, 1], H(t, s) :=

{
H ′(t, 2s), 0 ≤ s ≤ 1/2;

H ′′(t, 2s− 1), 1/2 ≤ s ≤ 1.
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is a homotopy of γ and ε.

Remark 3.4. Let γ, γ1, γ2, γ3, δ1, δ2 : [0, 1]→ X be paths in X.
(1) Let ϕ : [0, 1]→ [0, 1] be continuous with ϕ(0) = 0 and ϕ(1) = 1. Then γ ' γ ◦ ϕ.
(2) Set x0 := γ(0), x1 := γ(1). Then

εx0 · γ ' γ ' γ · εx1 .

(3) γ1 ' γ2 ⇒ γ−1 ' γ
−
2 .

(4) Assume γi(1) = δi(0) for i = 1, 2. Then γ1 ' γ2, δ1 ' δ2 ⇒ γ1 · δ1 ' γ2 · δ2.
(5) γ1 ' γ2 ⇔ γ1 · γ−2 null-homotopic.
(6) Assume γ1(1) = γ2(0) and γ2(1) = γ3(0). Then

γ1 · (γ2 · γ3) ' (γ1 · γ2) · γ3.

(7) Let γ and δ be loops, x := γ(0), y := δ(0). Then γ and δ are loop homotopic if
and only if there exists a path σ : [0, 1]→ X with σ(0) = x and σ(1) = y such that
γ and σ · δ · σ− are homotopic.

Proof. Exercise
For (7): Let H be a loop homotopy of γ and δ and define a path σ : [0, 1] → X,
σ(s) := H(0, s) = H(1, s). Then σ(0) = x and σ(1) = y. Define a homotopy of γ and
σ · δ · σ− by

H ′ : [0, 1]× [0, 1], H ′(t, s) :=


σ(3ts), 0 ≤ t ≤ 1/3;

H(3t− 1, s), 1/3 ≤ t ≤ 2/3;

σ((3− 3t)s), 2/3 ≤ t ≤ 1.

Conversely, assume that there exists a path σ with σ(0) = x and σ(1) = y such that
there exists a homotopy H ′ : γ ' σ · δ · σ−. Then γ and σ · δ · σ− are also loop
homotopic. As the relation of being loop homotopic is transitive, it suffices to show
that δ and σ · δ · σ− are loop homotopic. Define a loop homotopy of δ and σ · δ · σ− by

H : [0, 1]× [0, 1], H(t, s) :=


σ(1− s+ 3ts), 0 ≤ t ≤ 1/3;

δ(3t− 1), 1/3 ≤ t ≤ 2/3;

σ(1 + (2− 3t)s), 2/3 ≤ t ≤ 1.

Example 3.5. Let X = C, z̃ ∈ C, let r ∈ R>0. Recall that we defined

Br(z̃) := { z ∈ C ; |z − z̃| < r }.

Let
γ z̃r : [0, 1]→ C, t 7→ z̃ + r exp(2πit).

This is a loop. Instead of γ z̃r we also write ∂Br(z̃).
Let z0 ∈ Br(z̃), ε > 0. Then ∂Br(z̃) and ∂Bε(z0) are loop homotopic in C \ {z0}.
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Proof. As “loop homotopic” is an equivalence relation, we may assume that ε > 0 is
small enough such that Bε(z0) ⊆ Br(z̃).
For z ∈ ∂Br(z̃) let zε ∈ ∂Bε(z0) be the point of intersection of a line through z and z0

with ∂Bε(z0), i.e.,

zε := z0 + ε
z − z0

|z − z0|
.

Define a loop homotopy of ∂Br(z̃) and ∂Bε(z0) by

H : [0, 1]× [0, 1]→ C, (t, s) 7→ sγ z̃r (t)ε + (1− s)γ z̃r (t).

Then Bε(z0)∩H([0, 1]× [0, 1]) = ∅. In particular, H is a loop homotopy in C\{z0}.

Definition and Remark 3.6. A topological space X is called simply connected if it
is path-connected and if one the following equivalent conditions is satisfied.
(i) Any two paths γ, δ : [a, b]→ X with the same startpoint and the same endpoint are

homotopic to each other.
(ii) Every loop in X is null-homotopic.
(iii) Any two loops in X are loop homotopic.

Proof. “(i) ⇔ (ii)”: Remark 3.4 (5).
“(ii) ⇔ (iii)”: Remark 3.4 (7).

Remark 3.7. Let X and Y be topological spaces, f : X → Y a homeomorphism. Then
X is simply connected if and only if Y is simply connected.

Proof. Symmetry in X and Y ⇒ It suffices to show: “X simply connected⇒ Y simply
connected”: Let δ : [a, b] → Y be a closed path. Then γ := f−1 ◦ δ : [a, b] → X is a
closed path and hence there exists a homotopy to the constant path H : γ ' εx0 , where
x0 := γ(0) = γ(1). Then f ◦H : δ ' εy0 , where y0 := δ(0) = δ(1).

Definition 3.8. Let V be an R-vector space. A subset S ⊂ V is called star-shaped
(German: sternförmig), if there exists a point x0 ∈ V such that for all x ∈ V one has

{x0 + t(x− x0) ; 0 ≤ t ≤ 1 } ⊆ S.

(The left hand side is the line segment from x0 to x.) Then x0 is called a star center
(German: Sternzentrum).

Remark 3.9. Let V be a finite-dimensional R-vector space and let ∅ 6= X ⊆ V be a
subspace. Then

X convex⇒ X star-shaped⇒ X simply connected⇒ X path-connected.

Proof. The first implication is clear: In a convex set every point is a star center. The
last implication is by definition.
Let X be star-shaped with star center x. Let γ : [a, b]→ X be a loop. Then

H : [a, b]× [0, 1]→ X, H(t, s) := x+ s(γ(t)− x)

is loop homotopy of γ and εx in X.
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Example 3.10.

(1) Let V be finite-dimensional R-vector space, || · || be a norm on V , v0 ∈ V , r ∈ R>0
.

Then Br(v0) = { v ∈ V ; ||v − v0|| < r } is convex and hence simply connected. In
particular: V is simply connected.

(2) C \ {x ∈ R ; x ≤ 0 } is star-shaped with star center 1 and hence simply connected.

(B) Homotopy invariance

Notation: In this subsection let W = Rn, U ⊆ V := Rm be open and ω : U →
HomR(V,W ) a continuously differentiable W -valued 1-form on U .

Lemma 3.11 (Poincaré lemma, local version). Let U ⊆ Rm be star-shaped, let
ω : U → HomR(V,W ) be closed. Then ω is exact.

Proof. After a possible translation, we may assume that the star center is 0 ∈ Rm (to
simplify the notation). Let ω =

∑m
i=1 fidx

i with fi : U →W a C1-map. Define

F : U →W, F (x) :=

1∫
0

(
m∑
i=1

fi(tx)xi

)
dt, x = (x1, . . . , xm) ∈ U.

This is well-defined because { tx ; 0 ≤ t ≤ 1 } ⊆ U for all x ∈ U .
We claim that dF = ω. We have to show that ∂F

∂xj
= fj for j = 1, . . . ,m. As the map

(t, x) 7→
∑m

i=1 fi(tx)xi is C1, we may interchange integral and derivative. Hence:

∂F

∂xj
(x) =

1∫
0

(
m∑
i=1

∂

∂xj
(fi(tx)xi)

)
dt

=

1∫
0

(fj(tx) + t
( m∑
i=1

xi
∂fi
∂xj

(tx)
)

) dt

ω closed
=

1∫
0

fj(tx) dt+

1∫
0

t

(
m∑
i=1

xi
∂fj
∂xi

(tx)

)
dt

(∗)
=

1∫
0

fj(tx) dt+ tfj(tx)
∣∣∣1
0
−

1∫
0

fj(tx) dt

= fj(x),

where (*) holds by partial integration because

∂

∂t
(fj(tx))

chain rule
=

(
∂fj
∂x1

(tx), . . . ,
∂fj
∂xm

(tx)

)x1
...
xm

 =
m∑
i=1

xi
∂fj
∂xi

(tx).
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Theorem 3.12 (Homotopy invariance). Let ω be closed. Let γ, δ : [0, 1] → U be
piecewise C1-loops that are loop-homotopic. Then∫

γ

ω =

∫
δ

ω.

In the proof we will use the followint notation. For x, y ∈ V let x, y be the path
[0, 1] → V , t 7→ x + t(y − x) (the line segment from x to y). More generally set for
x1, . . . , xr ∈ V

x1, . . . , xr := x1, x2 · . . . · xr−1, xr.

Such paths are called piecewise affine linear.

Proof. Choose a norm || · || on V . Let H : [0, 1] × [0, 1] → U be a loop homotopy from
γ to δ. (i). As H([0, 1]× [0, 1]) is compact, there exists ε > 0 such that

||H(s, t)− y|| ≥ ε ∀ (t, s) ∈ [a, b]× [0, 1], y ∈ V \ U.

(ii). As [0, 1]× [0, 1] is compact, H is uniformly continuous. Hence there exists δ > 0
such that

(*) |t− t′| < δ, |s− s′| < δ ⇒ ||H(t, s)−H(t′, s′)|| < ε

2
.

Choose 0 = t0 < t1 < · · · < tm = 1 and 0 = s0 < s1 < · · · < sl = 1 with |tj − tj−1| < δ
for all j and |sk − sk−1| < δ for all k. Set Aj,k := H(tj , sk) (⇒ A0,k = Am,k for all k)
and define piecewise C1-loops

γk := A0,k, A1,k, . . . , Am,k.

for 0 ≤ k ≤ l.
(iii). For all 1 ≤ j ≤ m, 0 ≤ k ≤ l define piecewise C1-loops

σj,k := Aj−1,k−1, Aj−1,k, Aj,k, Aj,k−1, Aj−1,k−1.

The image of σj,k is contained in Bε(Aj−1,k−1) by (*), and Bε(Aj−1,k−1) is a convex
set which is contained in U by (i). Therefore the Lemma of Poincaré (Lemma 3.11)
implies that

∫
σj,k

ω = 0. Therefore the integral of ω over the following paths are equal

γk−1,

σ1,k ·A0,k−1, A1,k−1 · σ2,k ·A1,k−1, A2,k−1 · . . . · σm,k ·Am−1,k−1, Am,k−1,

A0,k−1, A0,k · γk ·Am,k, Am,k−1,

γk.

Therefore we obtain
∫
γ0
ω =

∫
γl
ω.

(iv). In the same way as in (iii) one can prove that
∫
γ ω =

∫
γ0
ω and

∫
δ ω =

∫
γl
ω.
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Theorem 3.13 (Poincaré lemma, global version). Let U ⊆ Rm be open simply
connected. Let ω : U → HomR(V,W ) be a continuously differentiable W -valued 1-form
on U . Then

ω closed⇔ ω exact.

Proof. By Theorem 2.28 it suffices to show that for any piecewise C1-loops γ one has

(*)

∫
γ

ω = 0.

But as U is simply connected, γ is null-homotopic, i.e., γ ' εx, where x = γ(0). Hence
Theorem 3.12 shows ∫

γ

ω =

∫
εx

ω = 0.

Corollary 3.14. Let ω : U → Hom(V,W ) be closed. Let γ, δ : [a, b]→ U be homotopic
piecewise C1-paths in U . Then ∫

γ

ω =

∫
δ

ω.

Proof. γ ' δ ⇒ γ · δ− null-homotopic. Hence:∫
γ

ω −
∫
δ

ω =

∫
γ·δ−

ω
3.12
= 0.

Remark and Definition 3.15. The proof of Theorem 3.12 shows that every path
γ (not necessarily piecewise C1) in U is homotopic in U to a piecewise affine linear
path γ̃ (which is in particular piecewise C1).3 This allows us to define for every path
γ : [a, b]→ U and for every closed 1-form ω on U :∫

γ

ω :=

∫
γ̃

ω.

This is independent of the choice of γ̃ by Corollary 3.14.

3Indeed, the proof shows that for every path γ there exists a piecewise affine linear path x0, . . . , xk
with x0 = γ(0) and xk = γ(1) such that γ can be written as γ1 · · · · · γk (up to reparametrization which
we may do because Remark 3.4 (1) shows that a reparametrized way is homotopic to the original one)
and such that for all i = 1, . . . , k the images of xi−1, xi and γi are contained in a convex open subset
Bi which is contained in U (in fact, we may even assume that xi = γi(1) but we don’t need this in
the sequel). Let σ0 := εx0 and σi := γi(1), xi for i = 1, . . . , k. Then σk = εxk . The paths γi · σi and
σi−1 · xi−1, xi are then contained in Bi and hence are homotopic. Hence induction shows that

γ1 · · · · · γi · σi ' σ0 · x0, x1 · · · · · xi−1, xi

for all i = 1, . . . , k and in particular

γ ' γ1 · · · · · γk · εxk ' εx0 · x0, x1 · · · · · xk−1, xk.
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(C) The fundamental group

Definition 3.16. Let X be a topological space, x ∈ X. Define

π1(X,x) := { γ : [0, 1]→ X ; γ path with γ(0) = γ(1) = x}/ ',

i.e., π1(X,x) is the set of homotopy classes [γ] of closed paths γ starting (and ending)
in x. Define a multiplication on π1(X,x) by

[γ][δ] := [γ · δ].

By Remark 3.4 this is well-defined and yields a group structure on π1(X,x). The
neutral element is [εx] and the inverse of [γ] ∈ π1(X,x) is [γ−].
In the sequel we simply write γ instead of [γ] for elements in π1(X,x).

Remark 3.17. Let X be a path-connected topological space, x, y ∈ X. Choose a path
σ from x to y. Then

ϕ : π1(X,x)→ π1(X, y), γ 7→ σ− · γ · σ

is an isomorphism of groups: Remark 3.4 shows that ϕ is well defined and that for
γ, γ′ ∈ π1(X,x) one has

ϕ(γ)ϕ(γ′) = σ− · γ · σ · σ− · γ′ · σ ' σ− · γ · εx · γ′ · σ ' σ− · γ · γ′ · σ = ϕ(γγ′).

Hence ϕ is a group homomorphism. An inverse is given by δ 7→ σ · δ · σ−.

Example 3.18. A path-connected topological space X is simply connected if and only
if π1(X,x) = 1 for all (equivalently, for one) x ∈ X.

Example 3.19. For n ∈ Z let γn : [0, 1] → C×, γn(t) = exp(2πint). We will see in
Section 8 that

Z→ π1(C×, 1), n 7→ γn

is an isomorphism of groups.

In general, π1(X,x) is not an abelian group (e.g., if X = R2 \ {P,Q} for P 6= Q points
in R2).

4 Holomorphic 1-forms

(A) Complex path integrals

We now consider C-valued 1-forms on open subsets U of the 2-dimensional R-vector
space C. As usual we denote the coordinate function Re: C→ R by x and Im: C→ R
by y. Thus every C-valued 1-form on U is of the form

ω = fxdx+ fydy

for functions fx, fy : U → C.

Notation: Let U ⊆ C open, f : U → C a map.

22



Remark and Definition 4.1. Let f : U → C be continuously real differentiable.
Recall that

(*) df =
∂f

∂x
dx+

∂f

∂y
dy.

For instance let z : U → C, x+ iy 7→ x+ iy and z̄ : U → C, x+ iy 7→ x− iy. Then

dz = dx+ idy, dz̄ = dx− idy.

Hence we can rewrite (*) as follows.

(**) df =
1

2

(
∂f

∂x
− i∂f

∂y

)
dz +

1

2

(
∂f

∂x
+ i

∂f

∂y

)
dz̄.

If we define the Wirtinger derivatives

∂f

∂z
:=

1

2

(
∂f

∂x
− i∂f

∂y

)
: U → C,

∂f

∂z̄
:=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
: U → C,

then (**) can be written

df =
∂f

∂z
dz +

∂f

∂z̄
dz̄.

Proposition 4.2. Let f : U → C be continuously real differentiable. The following
assertions are equivalent.
(i) f is holomorphic.
(ii) ∂f

∂z̄ = 0.
(iii) The 1-form fdz is closed.
In this case one has for the complex derivative

(4.2.1) f ′ =
∂f

∂z
,

and hence df = f ′dz.

A similar statement holds also for holomorphic maps f : U ⊆ Cm → Cn.

Proof. “(i) ⇔ (ii)”: We have ∂f
∂x = Re(f)+iIm(f)

∂x and similar for ∂f
∂y . Hence:

∂f

∂z̄
= 0⇔ ∂f

∂x
= −i∂f

∂y

⇔ ∂Re(f)

∂x
=
∂Im(f)

∂y
and

∂Im(f)

∂x
= −∂Re(f)

∂y
(1.12.1)⇔ f holomorphic.

“(ii) ⇔ (iii)”: We have:

fdz = fdx+ ifdy closed⇔ ∂f

∂y
= i

∂f

∂x

⇔ ∂f

∂z̄
= 0.

Finally (4.2.1) follows from (1.12.3) and (1.12.1).
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Definition and Remark 4.3. Let f : U → C be holomorphic. A holomorphic prim-
itive of f (German: holomorphe Stammfunktion von f) is a holomorphic function
F : U → C such that F ′ = f .
If G : U → C is a second primitive of f , then F − G : U → C is locally constant
(Proposition 1.15).

Remark 4.4. Let f : U → C be holomorphic. Then fdz is exact if and only if there
exists a holomorphic primitive F of f (Proposition 4.2). In this case one has dF = fdz
(4.2.1).

Remark 4.5. Let γ : [a, b]→ C be a C1-path (a, b ∈ R, a < b) and let f : {γ} → C be
continuous. Then

∫
γ

f dz
2.11
=

b∫
a

f(γ(t))Re(γ)′(t) + if(γ(t))Im(γ)′(t) dt

=

b∫
a

f(γ(t))γ′(t) dt.

Example 4.6. Let z0 ∈ C, let r ∈ R>0, n ∈ Z. Let γn : [0, 1] → C, γn(t) := z0 +
r exp(2πint). Then we have

∫
γn

1

z − z0
dz =

1∫
0

1

r exp(2πint)
2πinr exp(2πint) dt = 2πin.

In particular:

(4.6.1)

∫
∂Br(z0)

1

z − z0
dz = 2πi.

Remark 4.7. Let f : U → C be holomorphic. As fdz is a closed 1-form we can use
Remark 3.15 to define ∫

γ

f dz

for every path γ : [a, b]→ U (not necessarily piecewise C1).

Definition and Remark 4.8. Let γ : [a, b] → U be a piecewise C1-path (a, b ∈ R,
a < b). Then

L(γ) :=

b∫
a

|γ′(t)| dt

is called the length of γ.
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Let f : {γ} → C be continuous. Set

||f ||γ := sup
t∈[a,b]

|f(γ(t))| = sup
z∈{γ}

|f(z)|.

Then

(4.8.1)

∣∣∣∣∣∣
∫
γ

f dz

∣∣∣∣∣∣ =

∣∣∣∣∣∣
b∫
a

f(γ(t))γ′(t) dt

∣∣∣∣∣∣
≤

b∫
a

|f(γ(t))||γ′(t)| dt

≤ ||f ||γL(γ).

Remark 4.9. Assume that a holomorphic function f : U → C has a primitive F ,
γ : [a, b]→ U a path. Then (Proposition 2.16, Remark 3.15):∫

γ

f dz = F (γ(b))− F (γ(a)).

Proposition 4.10. Let U ⊆ C be open, let γ : [a, b]→ U be a path, and let f : U×{γ} →
C be continuous. Moreover assume that for z ∈ {γ} the function U → C, w 7→ f(w, z)
is holomorphic with derivative ∂f

∂w . Then

F : U → C, F (w) :=

∫
γ

f(w, z) dz

is holomorphic with

F ′(w) =

∫
γ

∂f

∂w
(w, z) dz.

Proof. This follows from (4.2.1) because an analogous assertion has been shown in
Analysis 2 for partial derivatives.

(B) Cauchy’s theorem and Cauchy integral formula

Theorem 4.11 (Cauchy’s Theorem). Let f : U → C be holomorphic.
(1) Let γ, δ : [a, b] → U be paths. Assume that γ and δ are homotopic or that γ and δ

are loops which are loop-homotopic. Then∫
γ

f dz =

∫
δ

f dz.

(2) f has a primitive if and only if

(*)

∫
γ

f dz = 0 for every loop γ in U.
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(3) Let U be simply connected. Then f has a primitive.

Proof. Proposition 4.2 ⇒ f dz is closed. Hence Theorem 3.12 and Corollary 3.14 im-
ply (1). The equivalence in (2) follows from Theorem 2.28. If U is simply connected,
Corollary 3.13 implies that f dz is exact, i.e., f has a primitive (Remark 4.4).

Remark 4.12. Let G ⊆ C be a domain. If f : G → C is a holomorphic function
that has a primitive (which is always the case, if G is simply connected), then such a
primitive F of f can be constructed as follows. Fix w0 ∈ G and set

F : U → C, F (w) :=

w∫
w0

f dz,

where
∫ w
w0

denotes the path integral over some path with startpoint w0 and endpoint
w. This follows from the proof of Theorem 2.28.

Remark 4.13.
(1) In general there exist holomorphic functions which do not have a primitive. For

instance f : C× → C, f(z) = 1/z has no primitive by (4.6.1). But it has a primitive
on every open simply connected subspace of C× (see the definition of logarithms in
Section 6).

(2) Cauchy’s theorem shows in particular that the restriction of f to small discs always
has a primitive. Hence primitives of f always exist locally.

(3) Even if U is not simply connected, then there exist holomorphic functions f : U → C
that have a primitive (e.g., f : C× → C, z 7→ zn has for −1 6= n ∈ Z the primitive
z 7→ 1

n+1z
n+1).

Theorem 4.14 (Cauchy integral formula, local version). Let U ⊆ C be open,
z̃ ∈ U and r > 0 such that Br(z̃) ⊆ U . Let f : U → C be holomorphic. Then for every
z0 ∈ Br(z̃) we have

f(z0) =
1

2πi

∫
∂Br(z̃)

f(z)

z − z0
dz

Proof. Let ε > 0 with Bε(z0) ⊆ Br(z̃). By Example 3.5, ∂Bε(z0) and ∂Br(z̃) are loop
homotopic in C \ {z0}. Hence we obtain∫

∂Br(z̃)

f(z)

z − z0
dz − 2πif(z0)

4.6,4.11
=

∫
∂Bε(z0)

f(z)

z − z0
dz − f(z0)

∫
∂Bε(z0)

1

z − z0
dz

=

∫
∂Bε(z0)

f(z)− f(z0)

z − z0
dz

ε→0−→ 0,

where the last line holds because |f(z)−f(z0)
z−z0 | is bounded in a neighborhood of z0 (f is

holomorphic in z0) and L(∂Bε(z0)) = 2πε→ 0 for ε→ 0.
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5 Properties of holomorphic functions I

Notation: U is always an open subspace of C.

(A) Analytic functions

Remark and Definition 5.1. Let z0 ∈ C. Recall that a complex power series in z0

is a series of the form

(*)
∞∑
n=0

an(z − z0)n

with z ∈ C and an ∈ C for all n ∈ N0. We usually consider (*) as sequence of functions
(fN )N∈N0 where

fN : C→ C, z 7→
N∑
n=0

an(z − z0)n.

Then

(5.1.1) ρ :=
1

lim supn |an|1/n
∈ R≥0

.

is called the radius of convergence of (*). We have:
(1) For z ∈ C with |z − z0| > ρ the power series (*) does not converge.
(2) The power series (*) converges absolutely and locally uniformly on Bρ(z0) (more

precisely: the series (*) converges absolutely for all z ∈ Bρ(z0), and the sequence
(fN )N∈N0 converges locally uniformly on Bρ(z0)).

The power series (*) is called convergent, if ρ > 0.

Definition 5.2. Let f : U → C be a map.
(1) Let z0 ∈ U . Then f is called analytic in z0, if there exists a convergent power series∑∞

n=0 an(z − z0)n such that f(z) =
∑∞

n=0 an(z − z0)n for all z in a neighborhood
of z0.

(2) f is called analytic if f is analytic in z0 for all z0 ∈ U .

Proposition 5.3. Let f(z) =
∑∞

n=0 an(z − z0)n be a power series, ρ > 0 its radius of
convergence. Then f is an analytic function on Bρ(z0).

Proof. See Analysis 1.

Remark 5.4. If f is analytic on an open subset U , it does not mean that there exists
a power series

∑
n an(z − z0)n such that f(z) =

∑
n an(z − z0)n for all z ∈ U . The

function f can only locally expressed as a power series.
For instance, consider f : C× → C, f(z) := 1/z. If there existed a power series∑

n an(z − z0)n such that f(z) =
∑

n an(z − z0)n for all z ∈ C×, then this power
series would have to converge on a circle B whose closure contains C×. Hence B would
be C. But then f could be extended continuously (even analytically) to the function
f̃ : C→ C, f̃(z) =

∑
n an(z − z0)n, which is not possible because limz→0 f(z) does not

exist in C.
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Verbatim as in Analysis 1 one shows the following proposition.

Proposition 5.5. Let f(z) =
∑∞

n=0 an(z − z0)n be a power series, ρ its radius of
convergence.
(1) The power series

∑∞
n=0 nan(z − z0)n−1 has also ρ as radius of convergence.

(2) The function f : Bρ(z0)→ C is infinitely often complex differentiable (in particular
holomorphic) and

f ′(z) =
∞∑
n=1

nan(z − z0)n−1

for z ∈ Bρ(z0).
(3)

an =
f (n)(z0)

n!
.

Example 5.6. (1) The power series exp(z) =
∑∞

n=0
zn

n! has radius of convergent ∞.
Hence

exp: C→ C

is a holomorphic function, called the exponentional function. We have

exp′(z)
5.5
=

∞∑
n=1

n

n!︸︷︷︸
= 1

(n−1)!

zn−1 =

∞∑
n=0

1

n!
zn = exp(z).

(2) The power series

cos(z) :=

∞∑
n=0

(−1)n

(2n)!
z2n,

sin(z) :=
∞∑
n=0

(−1)n

(2n+ 1)!
z2n+1

have radius of convergence∞ and therefore define holomorphic functions cos : C→
C and sin: C→ C. One has

sin′(z) = cos(z) and cos′(z) = − sin(z)

for all z ∈ C.

(B) Holomorphic functions are analytic

Lemma 5.7. Let γ : [a, b] → C be a path, let g : {γ} → C be continuous. Assume one
of the following hyoptheses.
(a) The path γ is piecewise C1.
(b) There exists an open neighborhood W of {γ} and a holomorphic function g̃ : W → C

such that g̃|{γ} = g.
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Define

f : C \ {γ} → C, f(w) :=

∫
γ

g(z)

z − w
dz.

For z0 ∈ C\{γ} we set ρ := dist(z0, {γ}) := infz∈{γ} d(z, z0). Then the function f |Bρ(z0)

has a power series expansion in z0 with

(5.7.1) f (n)(z0) = n!

∫
γ

g(z)

(z − z0)n+1
dz.

Proof. As {γ} is compact, we have ρ > 0.
We claim that for all 0 < r < ρ the restriction f |Br(z0) has a power series expansion
in z0 (then the claim shows that the power series expansion has radius of convergence
≥ r for all r < ρ and hence it radius of convergence is ≥ ρ).
Under the assumption (b) we may replace γ by a piecewise C1-path that is homotopic
to γ in W \Br(z0). This does not change f |Br(z0) by Cauchy’s theorem 4.11. Thus we
may assume that γ is piecewise C1, i.e. we are in case (a).
For z ∈ {γ} and w ∈ Br(z0) we have |w − z0| < |z − z0|. Hence we may write

1

z − w
=

1

z − z0

1

1− w−z0
z−z0

=
1

z − z0

∞∑
n=0

(
w − z0

z − z0

)n
=

∞∑
n=0

(w − z0)n

(z − z0)n+1

and the series converges locally uniformly as a function in z. Moreover, g is bounded
on {γ} and therefore

∑∞
n=0 g(z) (w−z0)n

(z−z0)n+1 converges also locally uniformly. Hence we

obtain

f(w) =

∫
γ

∞∑
n=0

g(z)
(w − z0)n

(z − z0)n+1
dz

2.20
=

∞∑
n=0

∫
γ

g(z)

(z − z0)n+1
dz


︸ ︷︷ ︸

=:an

(w − z0)n

and f has a power series expansion in z0. By Proposition 5.5 we then know that

f (n)(z0) = n!an.

Theorem 5.8. let f : U → C be holomorphic, z0 ∈ U , and let R ∈ R>0
such that

BR(z0) ⊆ U . Then f |BR(z0) has a power series expansion

f(z) =

∞∑
n=0

an(z − z0)n
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such that for all n ∈ N0 one has

(5.8.1) an =
f (n)(z0)

n!
=

1

2πi

∫
∂Br(z̃)

f(z)

(z − z0)n+1
dz,

where Br(z̃) is any disc such that z0 ∈ Br(z̃) and Br(z̃) ⊆ U . Furthermore one has

(5.8.2) |an| ≤
||f ||∂Br(z̃)

rn
.

Proof. By the Cauchy Integral formula (Theorem 4.14) one has

f(w) =
1

2πi

∫
∂Br(z̃)

f(z)

z − w
dz

for all w ∈ Br(z̃). Choosing r = R and z̃ = z0 and applying Lemma 5.7 to γ = ∂BR(z0)
shows that f has a power series expansion in z0 on BR(z0). Applying (5.7.1) to γ =
∂Br(z̃) we obtain (5.8.1).
It remains to show (5.8.2): Let γ := ∂Br(z̃). Then

|an| ≤
1

2π

∥∥∥∥ f(z)

(z − z̃)n+1

∥∥∥∥
γ

L(γ) =
1

2π
||f(z)||γ

1

rn+1
r2π =

||f ||γ
rn

.

Corollary 5.9. U ⊆ C open, f : U → C function. Then the following assertions are
equivalent:
(i) f is holomorphic.
(ii) f is infinitely often complex differentiable and all higher derivatives f (n) are holo-

morphic.
(iii) f is analytic.

Proof. “(iii) ⇒ (ii)”: Proposition 5.5. “(ii) ⇒ (i)”: Clear.
“(i) ⇒ (iii)”: Theorem 5.8

Corollary 5.10. Let f : U → C be holomorphic, z0 ∈ U ,
∑

n an(z − z0)n its power
series expansion in z0, and let ρ be its radius of convergence. Then

ρ = sup{ r ∈ R>0
; ∃ holomorphic function f̃ : U ∪Br(z0) with f̃ |U = f}.

Proof. Let ρ′ be the right hand side. As a power series is holomorphic within its open
disc of convergense, an extension f̃ of f to U ∪Bρ(z0) exists. Hence ρ ≤ ρ′.
Conversely, let us show that ρ ≥ ρ′. For all 0 < R < ρ′ we apply (5.8.2) to f̃ : U ∪
Bρ′(z0)→ C. As f and f̃ are equal in a neighborhood of z0, we have f (n)(z0) = f̃ (n)(z0).
Hence f and f̃ have the same power series expansion

∑∞
n=0 an(z − z0)n in z0. Set

C := ||f̃ ||∂BR(z0). Then (5.8.2) shows

(*) |an|1/n ≤ C1/n/R.
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If C = 0 this implies an = 0 for all n and hence ρ =∞ and in particular ρ ≥ ρ′.
Thus we may assume that C > 0. Then (*) shows that for all R < ρ′ one has

ρ =
1

lim supn |an|1/n
≥ R

because limnC
1/n = 1. Hence ρ ≥ ρ′.

Example 5.11. Let f : C \ {1} → C, f(z) := exp(z)/(z − 1). Then the radius of
convergence of the power series for f at 0 (resp. at i) is 1 (resp.

√
2).

The radius of convergence of the power series for f : C \ {0} → C, z 7→ exp(z)−1
z at any

z0 ∈ C \ {0} is ∞ (we will see that f can be extended holomorphically to 0).

Corollary 5.12. Let U ⊆ C be open and let f : U → C be continuous such that∫
γ

f dz = 0

for every piecewise C1-loop γ in U . Then f is holomorphic.

In fact, it suffices to take triangular loops γ (see Exercise).

Proof. Theorem 2.28 ⇒ ∃ F : U → C a C1-map with dF = fdz. In particular ∂F
∂z̄ = 0.

Hence F is holomorphic with F ′ = f by Proposition 4.2. Therefore f is holomorphic
by Theorem 5.9.

Theorem 5.13 (Riemann extension theorem). Let U ⊆ C be open, z0 ∈ U . Let
f : U \ {z0} → C be holomorphic and bounded near z0 (i.e., ∃ ε > 0, C ∈ R≥0 such that
|f(z)| ≤ C for all z ∈ Bε(z0) \ {z0}). Then there exists a unique holomorphic function
f̃ : U → C with f̃ |U\{z0} = f .

Proof. The uniqueness of f̃ is clear because U \ {z0} is dense in U . We show the
existence. After translation we may assume that z0 = 0 (to simplify the notation).
As f is bounded near z0 = 0, the function

F : U → C, F (z) :=

{
f(z)z, z 6= 0;

0, z = 0;

is holomorphic on U \ {0} and continuous on U .
(i). Let us first assume that there exists a continuous extension f̃ of f . Applying
Exercise 18(b)4 to f̃ , we see that f̃ is holomorphic. Hence the theorem is proved under
the above additional assumption.
(ii). We can now apply (ii) to the function F and see that F is holomorphic. In
particular F ′(0) = limz→0 f(z) exists. Hence f can be extended to a continuous function
f̃ on U . Using again (ii) we see that f̃ is holomorphic.

4Aufgabe 18(b): Let U ⊆ C be open, f : U → C continuous such that f |U\R is holomorphic. Then
f is holomorphic.
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(C) Uniform limits of holomorphic functions

Theorem 5.14 (Weierstraß’ theorem of convergence). Let U ⊆ C be open,
(fk : U → C)k∈N a locally uniformly convergent sequence of holomorphic functions.
Set f := limk→∞ fk.
(1) f is holomorphic.

(2) For all n ∈ N, the sequence of n-th derivatives (f
(n)
k )k converges locally uniformly

to f (n).

Proof. It suffices to show that for all z0 ∈ U there exists an ε > 0 such that f |Bε(z0)

is holomorphic and such that (f
(n)
k |Bε(z0))k converges locally uniformly to f (n)

|Bε(z0).
Thus we may assume that U is convex and in particular simply connected.
(1). We know that f is continuous by Analysis 2. By Lemma 5.12 it suffices to show
that

∫
γ f dz = 0 for every loop γ in U . As fk is holomorphic and as U is simply

connected, we have
∫
γ fk dz = 0 for all loops γ and all k (Cauchy’s theorem 4.11). As∫

γ(·) commutes with locally uniform limit (Proposition 2.20), this implies
∫
γ f dz = 0

for every loop γ in U .
(2). Let z0 ∈ U . Choose R > 0 so small such that BR(z0) ⊆ U and such that fk
converges uniformly to f on BR(z0) (possible because fk → f locally uniformly). Let
ε > 0. Then there exists k0 ∈ N such that |fk(z) − f(z)| ≤ ε for all z ∈ BR(z0) and
for all k ≥ k0. For all w ∈ BR/2(z0) we then have |w − z| ≥ R/2 for all z ∈ ∂BR(z0).
Therefore we find for w ∈ BR/2(z0) and for all k ≥ k0:

|f (n)(w)− f (n)
k (w)| = |(f − fk)(n)(w)|

(5.8.1)
= | n!

2πi

∫
∂BR(z0)

f(z)− fk(z)
(z − w)n+1

dz|

≤ n!

2π

ε

(R/2)n+1
R2π = εC,

where C is a constant not depending on ε, k, or on w. This shows that (f
(n)
k )k converges

locally uniformly to f (n).

Remark 5.15. Note that this is totally different from the real setting. There Weier-
straß approximation theorem tells us that every continuous function on [a, b] is the
uniform limit of polynomial functions (⇒ uniform limits of polynomials are not neces-
sarily differentiable).
Nevertheless one can ask whether every holomorphic function f is a uniform limit of
polynomials. More precisely: Let K ⊂ C be compact.
Question: Does there exist for every f that is holomorphic on some open neighborhood
of K a sequence of polynomial functions converging uniformly on K to f?
In general this is certainly not true: As polynomials p are holomorphic functions on
C and C is simply connected, we have

∫
γ p dz = 0 for every loop γ. As

∫
γ commutes

with uniform limit, we also should have
∫
γ f dz = 0 for every loop in K. Thus we

at least need K to be simply connected. In fact one can show that in this case the
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above question has indeed a positive answer (Runge’s theorem, see e.g. John Conway:
Functions of One Complex Variable, 2nd edition, Springer (1978), Chap. VIII).

(D) Liouville’s theorem

Definition 5.16. A holomorphic function on C is called entire (German: ganz ).

Corollary 5.17. Let c,M ∈ R≥0 and let f be an entire function. Assume that

||f ||∂BR(0) ≤MRc

for R large enough (i.e., ∃ R0 ∈ R>0 such that ||f ||∂BR(0) ≤ MRc for all R ≥ R0).
Then f is a polynomial of degree ≤ c.

Proof. Let f(z) =
∑∞

n=0 anz
n be the power series expansion of f on z0 = 0. By (5.8.2)

we have for all n > c

|an| ≤
MRc

Rn
R→∞−−−−→ 0.

Corollary 5.18 (Liouville). A bounded entire function is constant.

Proof. Corollary 5.17 with c = 0.

Corollary 5.19 (Main Theorem of Algebra). C is algebraically closed.

Proof. Let p : C→ C, p(z) := anz
n + · · ·+ a1z + a0, ai ∈ C, an 6= 0 be a non-constant

polynomial function (i.e., n ≥ 1). We have to show that p has a zero. Assume that
p(z) 6= 0 for all z ∈ C. Then f = 1/p is an entire function. Moreover, for every
sequence (zn)n in C with limn |zn| = ∞ one has limn |p(zn)| = |an||zn| = ∞. Hence f
is bounded. Contradiction to Corollary 5.18.

(E) Identity theorem

Lemma 5.20. Let f(z) =
∑∞

n=0 an(z − z0)n be a non-zero power series with radius of
convergence ρ > 0. Let m := ordz0(f) := inf{n ∈ N0 ; an 6= 0 }.
(1) Then f(z) = am(z − z0)m(1 + h(z)), where h(z) is a power series of the form

h(z) = b1(z − z0) + b2(z − z0)2 + . . . with radius of convergence ρ.
(2) There exists 0 < r ≤ ρ such that f(z) 6= 0 for all z ∈ Br(z0) \ {z0}.

Proof. (1).

f(z) = am(z − z0)m + am+1(z − z0)m+1 + . . .

= am(z − z0)m(1 + b1(z − z0) + b2(z − z0)2 + . . . ).

with bk = am+k/am for k ∈ N. Then lim supk |bk|1/k = lim supn |an|1/n (because
limk |am|1/k = 1). This shows (1).
(2). As h : Bρ(z0) → C is continuous and h(z0) = 0, there exists 0 < r ≤ ρ such that
|h(z)| < 1 for z ∈ Br(z0) and hence f(z) = am(z − z0)m(1 + h(z)) 6= 0 for z 6= z0.
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Proposition 5.21. Let U ⊆ C be open, f : U → C holomorphic. Then

supp(f) := { z ∈ U ; f(z) 6= 0 } (closure in U !)

is open and closed in U .

Proof. We only have to show that supp(f) is open in U . Let z0 ∈ supp(f). Then there
exists no z0 ∈ W ⊆ U open with f |W = 0. Thus Lemma 5.20 (2) shows that there
exists r > 0 with f(z) 6= 0 for z ∈ Br(z0) \ {z0} and hence Br(z0) ⊆ supp(f).

Definition 5.22. Let X be a topological space. A subspace S of X is called discrete,
if the induced topology is the discrete topology (⇔ ∀ s ∈ S ∃ s ∈ U ⊆ X open such
that U ∩ S = {s}).

Sometimes “discrete” is defined differently. With this definition the subspace { 1/n ; n ∈
N } of C is discrete.

Proposition 5.23. Let G ⊆ C be a domain. Let f : G→ C be holomorphic with f 6= 0.
Then { z ∈ G ; f(z) = 0 } is a discrete subspace of G.

Proof. Let z0 ∈ G with f(z0) = 0. As f is analytic, there exists by Lemma 5.20 (2)
either r > 0 such that f(z) 6= 0 for z ∈ Br(z0) \ {z0}, or f = 0 in some neighborhood
of z0.
Assume the latter case occurs, i.e. z0 /∈ supp(f). As G is connected, Proposition 5.21
shows that supp(f) = ∅ and hence f = 0; contradiction.

Theorem 5.24 (Identity Theorem). Let G ⊆ C be a domain. Let f, g : G → C be
holomorphic. Then the following assertions are equivalent.
(i) f = g.
(ii) There exists a non-discrete subspace S ⊆ G such that f(z) = g(z) for all z ∈ S.
(iii) There exists a point z0 ∈ G such that f (n)(z0) = g(n)(z0) for all n ∈ N0 (in other

words: f and g have the same power series expansion in z0).

Proof. “(i) ⇒ (iii)”: clear.
“(iii)⇒ (ii)”: (iii) implies that f and g have the same power series expansion in z0 and
hence are equal on some neighborhood of z0.
“(ii) ⇒ (i)”: Apply Proposition 5.23 to f − g.

6 Special functions

(A) Extension of real analytic functions

Corollary 6.1. Let G ⊆ C be a domain with G∩R 6= ∅. Let f, g : G→ C be holomorphic
with f |G∩R = g|G∩R. Then f = g.

Proof. G ∩ R is non-discrete.

Remark 6.2 (Exponential function).
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(1) The exponential function exp: C→ C is the unique holomorphic function f : C→ C
such that f(x) = ex for all x ∈ R.

(2) For z, w ∈ C one has
exp(z + w) = exp(z) exp(w).

Hence exp(z) 6= 0 for all z ∈ C and exp: (C,+)→ (C×, ·) is a group homomorphism.
(3) exp: C → C× is surjective: For all z = r exp(iϕ) ∈ C× (r ∈ R>0, ϕ ∈ R) there

exists w ∈ C with exp(w) = z (take w = s+ iϕ with s ∈ R such that exp(s) = r).
(4) Let z, z̃ ∈ C. Then exp(z) = exp(z̃) ⇔ ∃ k ∈ Z with z̃ = 2πik + z. In particular:

ker(exp) := { z ∈ C ; exp(z) = 1 } = 2πiZ := { 2πik ; k ∈ Z }.

Proof. Write z = x+ iy, z̃ = x̃+ iỹ with x, y, x̃, ỹ ∈ R. Then

∃ k ∈ Z : z̃ = 2πik + z ⇒ exp(z̃) = exp(2πik) exp(z) = exp(z)

⇒ exp(x̃) exp(iỹ) = exp(x) exp(iy)
polar decomp.⇒ exp(x̃) = exp(x),∃ k ∈ Z : ỹ = 2πk + y

⇒ ∃ k ∈ Z : z̃ = 2πik + z.

Hence exp yields an isomorphism of groups C/(2πiZ)
∼→ C×.

Remark 6.3 (Sine and Cosine). The holomorphic functions z 7→ sin2(z) + cos2(z)
and z 7→ 1 on C are equal on R 6.1⇒ sin2(z) + cos2(z) = 1 for all z ∈ C.

(B) Logarithm

Proposition and Definition 6.4. Let G ⊆ C be open and simply connected and let
f : G→ C be a holomorphic function with f(z) 6= 0 for all z ∈ G.
(1) There exists a holomorphic function Lf : G → C such that exp ◦Lf = f . Such an

Lf is called a branch of the logarithm of f on G.
(2) If Lf and L̃f are two branches of the logarithm of f on G, then there exists k ∈ Z

such that L̃f (z) = Lf (z) + 2πik for all z ∈ G.
(3) For every branch Lf of the logarithm of f one has for z ∈ G:

L′f (z) =
f ′(z)

f(z)
.

Proof. (3). If Lf is a branch of the logarithm of f , we have for z ∈ G

f ′(z) = exp′(Lf (z))L′f (z) = f(z)L′f (z).

(1). The function G → C, z 7→ f ′(z)/f(z) is holomorphic. Hence there exists a
primitive Lf : G→ C by Cauchy’s theorem 4.11. Then(

f(z)

exp(Lf (z))

)′
=
f ′(z) exp(Lf (z))− f(z)L′f (z) exp(Lf (z))

exp(Lf (z))2
= 0.
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Hence there exists α ∈ C× such that exp ◦Lf = αf . Replacing Lf by Lf + β, where
β ∈ C with exp(β) = α−1, we obtain a branch of the logarithm of f .
(2). For z ∈ G we have exp(L̃f (z) − Lf (z)) = f(z)/f(z) = 1. Thus L̃f − Lf
is a continuous (even holomorphic) function G → S := { 2πik ; k ∈ Z } ⊆ C by
Remark 6.2 (4). As S is discrete and G is connected, L̃f − Lf is constant.

Applying this proposition to f(z) = z we obtain:

Corollary 6.5. Let G ⊆ C be open and simply connected with 0 /∈ G.
(1) There exists a function L : G → C (called a branch of the logarithm) such that

exp(L(z)) = z for all z ∈ G.
(2) If L, L̃ : G → C are two branches of the logarithm, then there exists k ∈ Z with

L̃(z) = L(z) + 2πik for all z ∈ G.
(3) One has L′(z) = 1/z for all branches L of the logarithm.

Remark and Definition 6.6. Let G ⊆ C open and simply connected with 0 /∈ G.
Assume that G ∩ R>0 is a non-empty interval. Then there exists a unique branch of
the logarithm G→ C such that its restriction to G ∩ R>0 is the logarithm log defined
in Analysis 1.
This branch is called the principal branch of logarithm on G.

Proof. The uniqueness follows from Corollary 6.1. Choose w0 ∈ G ∩ R>0 and define a
primitive of 1/z (Remark 4.12) by

L : G→ C, w 7→
w∫

w0

1

z
dz − log(w0),

where
∫ w
w0

denotes the path integral over some path in G with startpoint w0 and end-
point w (well defined because G is simply connected and hence all such paths are homo-
topic). For x ∈ G∩R>0 we may take the line segment from w0 to x (because G∩R>0 is
an interval) and obtain indeed the one-dimensional integral L(x) =

∫ x
w0

1/t dt− log(w0)

and hence the usual logarithm. Moreover we have exp(L(x)) = x for all x ∈ G ∩ R>0

and hence exp(L(z)) = z for all z ∈ G by the identity theorem. Thus L is indeed a
branch of the logarithm.

Example 6.7. It is standard to consider

G := C \ { z ∈ R ; z ≤ 0 } = { reiϕ ∈ C ; r ∈ R>0,−π < ϕ < π }.

Then the principal branch of logarithm on G is given by

(6.7.1) log : G→ C, reiϕ 7→ log(r)︸ ︷︷ ︸
usual real log

+ iϕ.
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(C) Powers and roots

Notation: In this subsection let G ⊆ C be open and simply connected, f : G → C
holomorphic with f(z) 6= 0 for all z ∈ G.

Definition 6.8. Let q ∈ C. A holomorphic function of the form

G→ C, z 7→ exp(qLf (z)),

where Lf : G→ C is a branch of the logarithm of f , is called a q-th power of f .

It is easy to see that if h is a q-th power of f (q ∈ C×), then f a (1/q)-th power of h.

Remark 6.9. Let n ∈ N and let q = 1/n. Then a q-th power of f is also called an
n-th root of f .
Let rf,n, r̃f,n : G→ C be two n-th roots of f .
(1) There exists k ∈ {0, . . . , n− 1} such that

r̃f,n(z) = exp(
2πik

n
)rf,n(z)

for all z ∈ G (by Proposition 6.4 (2)).
(2) For all z ∈ G we have

(rf,n)n(z) = exp(
1

n
Lf (z))n

exp(w)n=exp(nw)
= exp(Lf (z)) = f(z).

and

r′f,n(z) =
1

n

f ′(z)

f(z)
rf,n(z).

7 Properties of holomorphic functions II

(A) Biholomorphic maps and local description of holomorphic func-
tions

Definition 7.1. Let U,U ′ ⊆ C be open.
(1) A bijective map f : U → U ′ is called biholomorphic or conformal if f and f−1 are

holomorphic.
(2) A holomorphic function f : U → C is called locally biholomorphic if for all z ∈

U there exist open neighborhoods z ∈ W ⊆ U and f(z) ∈ W ′ ⊆ C such that
f |W : W →W ′ is biholomorphic.

Remark 7.2. Let U,U ′ ⊆ C be open.
(1) A biholomorphic map f : U → U ′ is a homeomorphism.
(2) The Inverse Function Theorem (Theorem 1.9) shows that a holomorphic function

f : U → C is locally biholomorphic if and only if f ′(z) 6= 0 for all z ∈ U .
(3) exp is locally biholomorphic on C (because exp′(z) = exp(z) 6= 0 for all z ∈ C) but

not biholomorphic.
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Theorem 7.3. Let U ⊆ C be open, f : U → C holomorphic. Let z0 ∈ U and let

f(z) = a0 +
∞∑
n=m

an(z − z0)n, with m ∈ N and am 6= 0

Then there exist open neighborhoods 0 ∈W ⊆ C and z0 ∈W ′ ⊆ U and a biholomorphic
map ϕ : W →W ′ such that f(ϕ(w)) = a0 + wm for all w ∈W .

In other words: Locally, after a change of charts w 7→ ϕ(w),f is of the form f(w) =
a0 + wm.

Proof. Replacing f by f−a0 and z by z+z0 we may assume that a0 = 0 and z0 = 0. We
are looking for open neighborhoods W and W ′ of 0 and a biholomorphic Φ: W ′ → W
such that f(z) = Φ(z)m for z ∈W (then take ϕ := Φ−1). We have

f(z) = amz
mg(z),

where g : U → C is holomorphic with g(0) = 1 (Lemma 5.20 (1)). Hence we can find
0 ∈ V ′ ⊆ U open such that g(z) 6= 0 for all z ∈ V ′ and such that V ′ is an open disc
and in particular simply connected. Then by Remark 6.9 there exists a holomorphic
function g̃ : V ′ → C such that g̃m = g. In particular g̃(0) 6= 0. Moreover let a ∈ C×
with am = am. Then

f(z) = (Φ(z))m, with Φ: V ′ → C, Φ(z) = azg̃(z).

Moreover Φ′(0) = ag̃(0) 6= 0. Hence by Theorem 1.9 there exist 0 ∈W ′ ⊆ V ′ open and
0 = Φ(0) ∈W ⊆ C open such that Φ: W ′ →W is biholomorphic. Set ϕ := Φ−1.

Corollary 7.4. Let U ⊆ C be open, f : U → C holomorphic. Assume that f is injective.
Then V := f(U) is open in C and f : U → V is biholomorphic (in particular: f ′(z) 6= 0
for all z ∈ U).

Proof. As f : U → V is bijective, there exists an inverse map g : V → U . It suffices
to show that f ′(z0) 6= 0 for all z0 ∈ U (⇒ f locally biholomorphic ⇒ V open and g
holomorphic). Write f(ϕ(w)) = a0 +wm as in Theorem 7.3. A look at the power series
expansion f(z) =

∑
n≥0 an(z − z0)n shows that f ′(z0) 6= 0 if and only if a1 6= 0, i.e., if

and only if m = 1. As ϕ is injective, w 7→ a0 +wm is injective on a neighborhood of 0.
Hence m = 1 and therefore f ′(z0) 6= 0.

Example 7.5. Let

log : G := { reiϕ ; r ∈ R0,−π < ϕ < π } → C, reiϕ 7→ log(r) + iϕ

be the principal branch of logarithm on G (Example 6.7.1). Then log is injective
(because exp ◦ log = idG) and hence log is a biholomorphic map from G onto the
vertical strip { z ∈ C ; −π < Im(z) < π } by Corollary 7.4.
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(B) Open Mapping Theorem

Definition 7.6.
(1) Let X and Y be topological spaces. A map f : X → Y is called open if f(U) is

open in Y for every open subset U of X.
(2) Let X be a topological space. A basis of of X5 is a set B of open subsets of X such

that every open subset of X is a union of subsets in B.

Remark 7.7.
(1) Let (X, d) be a metric space and let X =

⋃
i∈I Ui with Ui ⊆ X open. Then

B := {Br(x0) ; x0 ∈ X, r ∈ R>0, ∃ i ∈ I : Br(x0) ⊆ Ui }

is a basis of the topological space X.
(2) Let f : X → Y be a map of topological spaces X and Y , let B be a basis of X. If

f(V ) is open in Y for all V ∈ B, then f is open.

Proof. Let U ⊆ X be open. Then U =
⋃
i∈I Ui with Ui ∈ B and hence f(U) =⋃

i∈I f(Ui) is open in Y .

(3) The composition of two open maps is again open.
(4) Every homeomorphism is open.
(5) Every locally biholomorphic map is open.

Theorem 7.8 (Open mapping theorem). Let G ⊆ C be a domain and let f : G→ C
be holomorphic and not constant. Then f is open.

Proof. By Remark 7.7 (2) it suffices to check that for all z0 ∈ G there exists z0 ∈ U ⊆ G
open such that f(Br(z0)) is open for all r ∈ R>0 with Br(z0) ⊆ U . Note that the
Identity theorem implies: f not constant ⇒ f |U not constant for ∅ 6= U ⊆ G open.
Thus by Theorem 7.3 we may assume that f is of the form w 7→ z0 + wm for some
m ∈ N. But this map clearly sends open discs to open discs.

(C) Maximum modulus principle

Recall: A subspace I ⊆ R≥0 is open and connected if and only if I is of the form
I = (a, b) for real numbers 0 < a < b or of the from I = [0, b) for b ∈ R>0.

Example 7.9.
(1) Let X and Y be topological spaces and endow X × Y with the product topology.

Then the projections X×Y → X, (x, y) 7→ x and X×Y → Y , (x, y) 7→ y are open.
(2) Let (V, || · ||) be a normed R-vector space. Then || · || : V → R≥0 is open.

Proof. Remark 7.7 (2) ⇒ It suffices to show that the image of Br(v) under || · || is
open in R≥0 for all v ∈ V and r ∈ R>0. But this image is (||v||−r, ||v||+r)∩R≥0.

(3) In particular: The maps C → R, z 7→ Re(z) and z 7→ Im(z) are open. The map
C→ R≥0, z 7→ |z| is open.

5This notion has nothing to do with the notion of a basis of a vector space.
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Theorem 7.10 (Maximum/Minimum modulus principle). Let G ⊆ C be a
domain, f : G → C a holomorphic function. Assume that there exists z0 ∈ G and
z0 ∈W ⊆ G open such that one of the following conditions hold.
(a) |f(z)| ≤ |f(z0)| for all z ∈W (i.e. |f | has a local maximum in z0).
(b) |f(z)| ≥ |f(z0)| for all z ∈W and f(z0) 6= 0.
Then f is constant.

Proof. Assume f is non-constant. Then f is open (Theorem 7.8). As | · | : C→ R≥0 is
also open (Example 7.9 (2)), |f |(W ) is open in R≥0. But under assumptions (a) or (b)
the point |f(z0)| ∈ |f |(W ) is not an inner point. Contradiction.

Note: Under assumption (b) one has to exclude |f(z0)| = 0 because sets of the form
[0, b) are open in R≥0.

Corollary 7.11. Let G ⊆ C be a bounded domain, let Ḡ be its closure. Let f : Ḡ→ C
be a continuous function such that f |G is holomorphic. Then

sup
z∈Ḡ
|f(z)| = max

z∈∂G
|f(z)|,

i.e., |f | attains its maximum on ∂G.

Proof. If f is constant, the assertion is trivial. Hence assume that f is non-constant.
As G is bounded, Ḡ and ∂G are compact. Therefore |f | attains its maximum on Ḡ.
But this cannot be in G if f is non-constant (Theorem 7.10).

Remark 7.12. As Re: C → R is open (Remark 7.9), the same argument as in the
proof of Theorem 7.10 shows: G domain, f : G→ C holomorphic. Assume there exists
z0 ∈ G such that Re(f(z0)) ≥ Re(f(z)) for all z ∈ G or that Re(f(z0)) ≤ Re(f(z)) for
all z ∈ G. Then f is constant.
Similar for the imaginary part.

8 Homology and the winding number

(A) Digression: Covering Spaces

Notation: In this section, X and X̃ always denote Hausdorff topological spaces.

Definition 8.1.
(1) A continuous map p : X̃ → X is called a covering if for all x ∈ X there exists

x ∈ U ⊆ X open such that

(8.1.1) p−1(U) =
⊔
i∈I

Ũi disjoint union, I 6= ∅ some index set

for open sets Ũi ⊆ X such that p|Ũi : Ũi → U is a homeomorphism for all i ∈ I.

(2) A covering p : X̃ → X is called a universal covering if X̃ is simply connected.

Remark 8.2.
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(1) A covering is always a surjective map: For every U as in (8.1.1) and for every y ∈ U
we have a bijection p−1({y})↔ I.

(2) The map f : C → C, z 7→ z2 is surjective, but there exists no open neighborhood
U of 0 such that #f−1({z0}) = #f−1({0}) = 1 for all z0 ∈ U .

Example 8.3.
(1) The function R→ S1 = { z ∈ C ; |z| = 1 }, x 7→ e2πix is a universal covering.
(2) The function exp: C→ C× is a universal covering.

We will only prove (and use) (2). (1) is left as an exercise.

Complex analytic proof. As C is simply connected, we only have to show that exp is a
covering. For y ∈ C× let V ⊆ C× be simply connected domain with y ∈ V . Let L : V →
C be a branch of the logarithm (i.e. exp(L(z)) = z for all z ∈ V ). Then an arbitrary
branch of the logarithm on V is given by Lk := L+ 2πik for k ∈ Z (Corollary 6.5). Set
Uk := Lk(V ). Then Uk is open in C by the Open mapping Theorem 7.8. Then Lk : V →
Uk is bijective and holomorphic with inverse map exp |Uk : Uk → V (Corollary 7.4).
Moreover

exp−1(V ) =
⊔
k∈Z

Uk

is a disjoint union of open sets (if there exists z ∈ Uk ∩ Ul then z = Lk(exp(z)) =
Ll(exp(z)) = Lk(exp(z)) + 2πi(l − k) hence l = k).

Proposition 8.4. Let p : X̃ → X be a covering, let γ : [a, b] → X be a path, and let
x̃ ∈ X̃ such that p(x̃) = γ(a) (such x̃ always exists because p is surjective). Then there
exists a unique path γ̃ : [a, b]→ X̃ such that

(*) γ̃(a) = x̃ and p ◦ γ̃ = γ.

Note, that even if γ is a loop, then γ̃ is not necessarily a loop.

Proof. Uniqueness. Let γ̃1 and γ̃2 be two paths satisfying (*). Then Z := { t ∈
[a, b] ; γ̃1(t) = γ̃2(t) } is non-empty. It is closed because X̃ is Hausdorff. Moreover for
t ∈ Z choose an open neighborhood U of p(γ̃i(t)) as in (8.1.1). By continuity, γ̃1 and
γ̃2 must map a neighborhood t ∈ W ⊆ [a, b] into the same Ũi. Hence p ◦ γ̃1 = p ◦ γ̃2

shows γ̃1|W = γ̃2|W . This shows that Z is also open. Hence Z = [a, b] because [a, b] is
connected.
Existence. The existence of γ̃ is clear if γ([a, b]) ⊆ U with U as in (8.1.1).
In general the compactness of [a, b] shows that there exist a = a0 < a1 < · · · < am = b
such that for all j = 1, . . . ,m one has γ([aj−1, aj ]) ⊆ U for some U as in (8.1.1). Hence
we can lift γ|[aj−1,aj ] successively.
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(B) The winding number

Proposition 8.5. Let z0 ∈ C and let γ be a loop in C \ {z0}. Then there exists k ∈ Z
such that γ is loop homotopic in C× to the loop

βk : [0, 1]→ C×, t 7→ z0 + exp(2πikt).

Proof. We may assume that z0 = 0. By Remark 3.4 (7) it suffices to show that every
loop γ with startpoint 1 is homotopic to some βk. As exp is a covering (Example 8.3),
there exists a unique lift γ̃ : [0, 1] → C such that γ̃(0) = 0 (Proposition 8.4). Then
exp(γ̃(1)) = 1 and hence there exists k ∈ Z such that γ̃(1) = 2πik. As C is simply
connected, there exists a homotopy H̃k of γ̃ and the line segment σk from 0 to 2πik
(i.e., σk : [0, 1]→ C, σk(t) = 2πikt). But then exp ◦H̃ is a homotopy of γ and exp ◦σk =
βk.

In fact, the integer k then can be computed (by homotopy invariance of the integral)
by

1

2πi

∫
γ

1

z − z0
dz =

1

2πi

∫
βk

1

z − z0
dz

4.6
= k.

This leads us to the following definition.

Definition 8.6. Let γ : [a, b]→ C be a path and let u ∈ C \ {γ}. Then

W (γ;u) :=
1

2πi

∫
γ

1

z − u
dz

is called the winding number (German: Umlaufzahl or Windungszahl) or the index of
γ with respect to w.

Note: z 7→ 1/(z − u) is holomorphic on the open neighborhood C \ {u} of {γ}, thus∫
γ

1
z−u dz is defined for every path γ (Remark 4.7).

Proposition 8.7. Let γ : [a, b]→ C be a loop.
(1) W (γ;u) is an integer for all u ∈ C \ {γ}.
(2) The function

C \ {γ} → Z, u 7→W (γ;u)

is locally constant (and hence constant on the path components of C \ {γ}).
(3) Let G ⊆ C \ {γ} be an6 unbounded path component. Then W (γ;u) = 0 for all

u ∈ G.
(4) Let u ∈ C and let γ and δ be loops that are loop homotopic in C \ {u}. Then

W (γ;u) = W (δ;u).

6In fact, using that {γ} is compact, it is easy to see that there is only one unbounded path component.
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Proof. (1). Proposition 8.5.
(2). The function is continuous (even holomorphic) by Lemma 5.7 and Z-valued by
(1). Hence it is locally constant.
(3). As G is not bounded, there exists for all ε > 0 an u ∈ G such that sup{ 1/(z −
u) ; z ∈ {γ} } ≤ ε. Hence W (γ;u) ≤ εL(γ). Hence W (γ;u) = 0 for all u ∈ G by (2).
(4). Homotopy invariance of the path integral of holomorphic functions (Theo-
rem 4.11).

Example 8.8. Let z0 ∈ C, r ∈ R>0, and γ = ∂Br(z0). Then we have for u ∈ C \ {γ}:

W (γ;u) =

{
1, u ∈ Br(z0);

0, u /∈ Br(z0).

(C) First Homology group

Notation: In this subsection let X be a topological space.

Definition 8.9. Let S be a set. The free abelian group generated by S is the abelian
group

Z(S) := {n : S → Z ; n map s 7→ ns with ns = 0 for all but finitely many s ∈ S}.

Elements n ∈ Z(S) are usual written as
∑

s∈S nss (a “formal linear combination”). In
practice, we skip the summands with ns = 0 and write also n1s1 + · · · + nrsr with
ni ∈ Z, si ∈ S, r ∈ N0.
Using the notation as formal linear combinations, the addition in Z(S) is given by∑

s∈S
nss+

∑
s∈S

mss =
∑
s∈S

(ns +ms)s.

Z(S) is a free Z-module with basis s ∈ S.
Instead of Z we can also take a field K and obtain a vector space K(S). (In fact, we
may take any ring R and obtain the free left R-module generated by S.)

Definition 8.10. Let C1(X,Z) be the free abelian group generated by S := C([0, 1], X),
the set of paths in X. An element Γ ∈ C1(X,Z) is called a 1-chain in X. It is written
as Γ =

∑
γ nγγ or simply as n1γ1 + · · ·+ nrγr with γi : [0, 1]→ X a path and ni ∈ Z.

We consider paths γ : [0, 1]→ X as the element 1 · γ ∈ C1(X,Z).
For Γ = n1γ1 + · · ·+ nrγr ∈ C1(X,Z) we define

{Γ} :=
⋃

1≤i≤r
ni 6=0

{γi}.

Definition 8.11. (1) A 0-chain in X is an element of C0(X,Z) := Z(X), i.e., 0-chains
are formal linear combinations n1x1 + . . . nrxr with ni ∈ Z and xi ∈ X.
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(2) Let ∆ := { (x, y) ∈ R2 ; 0 ≤ y ≤ x ≤ 1 } be the triangle in R2 with vertices (0, 0),
(1, 0), and (1, 1).
A 2-chain in X is an element of C2(X,Z) := Z(C(∆,X)), i.e., 2-chains are formal
linear combinations n1δ1 + . . . nrδr with ni ∈ Z and δi : ∆→ X continuous.

Definition 8.12. (1) Let γ : [0, 1]→ X be a path. Define ∂1(γ) := γ(1) + (−1)γ(0) ∈
C0(X,Z). More generally, define a map

∂1 : C1(X,Z)→ C0(X,Z),
r∑
i=1

niγi 7→
r∑
i=1

ni(γi(1)− γi(0)).

This is a group homomorphism.
(2) Let ∆ = { (x, y) ∈ R2 ; 0 ≤ y ≤ x ≤ 1 } as above. We describe its boundary with

3 paths:

(∂∆)1 : [0, 1]→ R2, t 7→ (t, 0),

(∂∆)2 : [0, 1]→ R2, t 7→ (1, t),

(∂∆)3 : [0, 1]→ R2, t 7→ (1− t, 1− t).

Let δ : ∆→ X be continuous. Define

∂2(δ) :=

3∑
k=1

δ ◦ (∂∆)k ∈ C1(X,Z).

More generally, define

∂2 : C2(X,Z)→ C1(X,Z),

r∑
i=1

niδi 7→
r∑
i=1

ni∂2(δi).

This is a group homomorphism.
The homomorphisms ∂1 and ∂2 are called boundary maps. We also define ∂0 : C0(X,Z)→
0 the zero homomorphism and therefore have group homomorphisms

C2(X,Z)
∂2−→ C1(X,Z)

∂1−→ C0(X,Z)
∂0−→ 0.

For δ : ∆→ X one has ∂1(∂2(δ)) = 0 and hence

(8.12.1) ∂1 ◦ ∂2 = 0.

Definition and Remark 8.13. Define for i = 0, 1 subgroups of Ci(X,Z):

Zi(X,Z) := ker(∂i), Bi(X,Z) := im(∂i+1).

Elements of Zi(X,Z) are called i-cycles. Elements of Bi(X,Z) are called i-boundaries.
We have:
(1) Z0(X,Z) = C0(X,Z).
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(2) Z1(X,C) consists of those 1-chains
∑r

i=1 niγi such that every point x ∈ X one has∑
1≤i≤r
x=γi(0)

ni =
∑

1≤i≤r
x=γi(1)

ni,

i.e., such that every point is as often startpoint as it is an endpoint.
(3) As ∂1 ◦ ∂2 = 0,

B1(X,Z) ⊆ Z1(X,Z) ⊆ C1(X,Z).

For i = 0, 1 we call Hi(X,Z) := Zi(X,Z)/Bi(X,Z) the i-th singular homology group of
X. Two i-chains Γ,Γ′ ∈ Ci(X,Z) are called homologous in X, if Γ−Γ′ ∈ Bi(X,Z). An
i-chain Γ is called null-homologous in U , if Γ ∈ Bi(X,Z).

Remark 8.14. The map X → π0(X) that sends a point x ∈ X to the path component
of X containing x yields an isomorphism H0(X,Z)

∼→ Z(π0(X)) of groups. In other
words: Two points x, x′ ∈ X are homologous if and only x and x′ lie in the same
path-component of X.

Proof. Exercise

(D) Homology, winding numbers, and homotopy

Definition 8.15. Let X = V , W = Rm be finite-dimensional R-vector spaces.
(1) A 1-chain Γ = n1γ1 + · · · + nrγr in V is called piecewise C1 if every path γi with

ni 6= 0 is piecewise C1.
(2) Let Γ = n1γ1 + . . . nrγr be a 1-chain in V , let ω : {Γ} → HomR(V,W ) be a contin-

uous W -valued 1-form. Assume that Γ is piecewise C1 or that there exists an open
neighborhood U of {Γ} and a closed W -valued 1-form ω̃ on U such that ω̃|{Γ} = ω.
Then define ∫

Γ

ω :=
r∑
i=1

ni

∫
γi

ω.

(3) Let V = W = C, u ∈ C and let Γ be a 1-chain in C \ {u} (i.e. {Γ} ⊆ C \ {u}).
Then define the winding number

W (Γ;u) :=
1

2πi

∫
Γ

1

z − u
dz.

Proposition 8.16. Let U ⊆ C be open, and let Γ,Γ′ ∈ C1(U,Z) be two 1-chains in U .
Then Γ and Γ′ are homologous in U if and only if

(*)
∂1(Γ) = ∂1(Γ′)

and W (Γ;u) = W (Γ′;u) ∀u ∈ C \ U.

In particular we have for Γ ∈ Z1(U,Z):

Γ null-homologous in U ⇔W (Γ;u) = 0 ∀u ∈ C \ U.
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The hypothesis “∂1(Γ) = ∂1(Γ′)” is in particular satisfied if Γ,Γ′ ∈ Z1(U,Z).
In the sequel we will take (*) as a definition of “homologous” and we will not use
Proposition 8.16.

Proof. W. Fulton: Algebraic Topology, A first course, Springer (1995), Theorem 6.11
+ Exercise 6.13

Proposition 8.17. Let X be a topological space and let γ, γ′ : [0, 1] → U be paths in
X. If γ and γ′ are homotopic, then γ and γ′ are homologous.

There exist open subsets U of C and loops in U that are null-homologous in U but not
null-homotopic in U .
We will prove the proposition only if X = U is open in C. For a proof that works in
the general case, see: W. Fulton: Algebraic Topology, A first course, Springer (1995),
Lemma 6.4.

Proof. If γ and γ′ are homotopic in U , then

∂1(γ) = γ(1)− γ(0) = γ′(1)− γ′(0) = ∂1(γ′) ∈ C0(U,Z).

Moreover, Cauchy’s theorem (Theorem 4.11) shows that W (γ;u) = W (γ′;u) for u ∈
C \ U . Therefore Proposition 8.16 shows that γ and γ′ are homologous.

Remark 8.18. Let X be a topological space. Proposition 8.17 shows that we obtain
for x0 ∈ X a well defined map

(8.18.1) h := hX,x0 : π1(X,x0)→ H1(X,Z), [γ] 7→ γ +B1(U,Z)

We claim that this is a group homomorphism. We show the claim again only if X = U
is open in C. For γ, δ ∈ π1(U, x0) the loop γ · δ and the 1-cycle γ + δ have the same
winding numbers and hence they are homologous. This shows that hU,x0 is a group
homomorphism.

Proposition 8.19. Let X be a path-connected topological space, let x ∈ X. Consider
the group homomorphism hX,x : π1(X,x)→ H1(X,Z) (8.18.1).
(1) hX,x is surjective
(2) Its kernel of hX,x is the derived group π1(X,x)der of π1(X,x), i.e. the subgroup

generated by γδγ−1δ−1 for γ, δ ∈ π1(X,x).
Therefore hX,x induces an isomorphism of abelian groups

π1(X,x)ab := π1(X,x)/π1(X,x)der ∼→ H1(X,Z).

Proof. We will only prove (and use in the sequel) the surjectivity of hX,x (for a proof
of Assertion (2) see: W. Fulton: Algebraic Topology, A first course, Springer (1995),
Theorem 12.22).
Let Γ =

∑r
i=1 niγi ∈ Z1(X,Z), where ni ∈ Z and γi a path with startpoint pi ∈ X and

endpoint qi ∈ X. For each point c ∈ X that occurs as an endpoint or as a startpoint of
any γi, choose a path τc from x to c (this is possible because X is path connected). Set

γ̃i := τpi · γi · τ−qi .
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This is a loop with startpoint x. Let [γ̃i] ∈ π1(X,x) be its homotopy class and let

γ := [γ̃1]n1 · · · [γ̃1]nr ∈ π1(X,x).

Then hX,x sends γ to the following element in H1(X,Z):

r∑
i=1

niγ̃i =
r∑
i=1

ni(−τqi + γi + τpi)
Γ∈Z1=

r∑
i=1

niγi = Γ ∈ H1(X,Z)

This shows the surjectivity of hX,x.

Corollary 8.20. Let X be a simply connected topological space. Then H1(X,Z) = 0.

Proof. Choose x ∈ X. X simply connected ⇔ π1(X,x) = 0, hence H1(X,Z) = 0 by
Proposition 8.19.

Corollary 8.21. Let G ⊆ C be a domain. Then every 1-cycle in Z1(G,Z) is homolo-
gous to a piecewise C1-loop in G.

Proof. By Proposition 8.19 every 1-cycle in G is homologous to a loop in G. Every
loop γ in G is homotopic in G to a piecewise C1-loop γ′ (Remark 3.15). In particular
γ is homologous to γ′.

Proposition 8.22. Let Γ ∈ Z1(C,Z).
(1) W (Γ;u) ∈ Z.
(2) The map C \ {Γ} → Z, u 7→W (Γ;u) is locally constant.
(3) Let G ⊆ C\{Γ} be an unbounded path component. Then W (Γ;u) = 0 for all u ∈ G.

Proof. (1),(3). Applying Corollary 8.21 for G = C \ {u} we may assume that Γ is a
loop. Hence this follows from Proposition 8.7.
(2). It suffices to show that for all u ∈ C\{Γ} there exists r > 0 with Br(u) ⊂ C\{Γ}
such that Br(u)→ Z, z 7→W (Γ; z) is constant. Using Corollary 8.21 for G = C\Br(u)
we may assume that Γ is a loop. Then we are again done by Proposition 8.7.

Remark 8.23. Let U ⊆ C be open and Γ ∈ Z1(U,Z). Then {Γ} is compact and hence
{Γ} ⊆ BR(0) for some R ∈ R>0. Then Remark 8.22 (3) implies

{u ∈ C \ {Γ} ; W (Γ;u) 6= 0 } ⊆ BR(0).

In particular, it is compact.

Example 8.24. Let u ∈ C and set G := C \ {u}.
(1) As W (Γ;u) = 0 for all Γ ∈ B1(G,Z) (Proposition 8.16), we obtain a group homo-

morphism
W (·;u) : H1(G,Z)→ Z, Γ 7→W (Γ;u).

This homomorphism is surjective because n∂B1(u) ∈ Z1(G,Z) has winding number
n for all n ∈ Z.
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(2) Choose z0 ∈ G. We obtain a surjective group homomorphisms

π1(G, z0)
h−→ H1(G,Z)

W (·;u)−→ Z.

By Proposition 8.5 the composition π1(G,Z) → Z is an isomorphism of groups.
Hence h and W (·;u) are isomorphisms. Hence

π1(G, z0) ∼= H1(G,Z) ∼= Z.

Example 8.25. Let U ⊆ C be open. Let Γ ∈ B1(U,Z) (e.g., if U is simply connected
and Γ ∈ Z1(U,C)). Let z1, . . . , zm ∈ U \ {Γ} be distinct points and for i = 1, . . . ,m
choose ri ∈ R>0 such that Bri(zi) ⊆ U . Assume that Bri(zi) ∩Brj (zj) = ∅ for i 6= j.
Then Γ is homologous in U∗ := U \ {z1, . . . , zm} to

m∑
i=1

W (Γ; zi)∂Bri(zi).

Proof. Set ni := W (Γ; zi) and γi = ∂Bri(zi) for i = 1, . . . ,m. We have to show that
W (Γ;u) =

∑m
i=1 niW (γi;u) for all u ∈ C \ U∗ = (C \ U) ∪ {z1, . . . , zm}.

For u ∈ C \ U we have W (Γ;u) = 0 by hypothesis and we have W (γi;u) = 0 for all i
because u is outside every circle γi. Hence

W (Γ;u) = 0 =
∑
ni

W (γi;u).

If u = zk for some k, then W (γi, zk) = 1 for i = k and 0 for i 6= k. Hence

W (Γ; zk) = nk =
m∑
i=1

niW (γi; zk).

(E) Cauchy’s theorem, homology version

Theorem 8.26 (Cauchy integral formula, homology version). Let U ⊆ C be
open, let Γ ∈ B1(U,Z), and let f : U → C be holomorphic. Let z0 ∈ U with z0 /∈ {Γ}.
Then for all n ∈ N one has

(*) W (Γ; z0)f (n)(z0) =
n!

2πi

∫
Γ

f(z)

(z − z0)n+1
dz.

Proof. (i). We may assume that n = 0: the general claim follows by differentiating
under the integral sign (Proposition 4.10). Then the left hand side of (*) has the form

1
2πi

∫
Γ
f(z0)
z−z0 dz. Hence we have to prove:

h0(z0) :=

∫
Γ

f(z)− f(z0)

z − z0
dz = 0

for z0 ∈ U \ {Γ}.
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(ii). Define

g : U × U → C, g(z, w) :=

{
f(z)−f(w)

z−w , z 6= w;

f ′(z), z = w.

Then g is continuous (Analysis 2). Moreover, U → C, w 7→ g(z, w) is continuous and
holomorphic on U \ {z}. Thus it is holomorphic by Theorem 5.13.
(iii). Consider the continuous function

h0 : U → C, h0(w) :=

∫
Γ

g(z, w) dz.

It suffices to show that h0 = 0.
We first claim that h0 is holomorphic. This is a local question. Hence choose for all
z0 ∈ U a disc Br(z0) ⊆ U and let γ be a piecewise C1-loop in Br(z0). Then∫

γ

h0(w) dw =

∫
γ

∫
Γ

g(z, w) dz dw
Fubini

=

∫
Γ

∫
γ

g(z, w) dw dz
(ii)
= 0

because w 7→ g(z, w) is holomorphic. Hence h0 is holomorphic on Br(z0) by Corol-
lary 5.12.
(iv). Extend h0 to an entire function: Let V := { z ∈ C \ {Γ} ; W (Γ; z) = 0 }. As
Γ ∈ B1(U,Z), we have U ∪ V = C. Define

h1 : V → C, h1(w) :=

∫
Γ

f(z)

z − w
dz.

This is a holomorphic function by Lemma 5.7. For w ∈ U ∩ V we have

h0(w) =

∫
Γ

f(z)

z − w
dz − f(w)2πiW (Γ;w) = h1(w).

Hence h0 can be extended to an entire function h : C→ C by setting

h(z) :=

{
h0(z), for z ∈ U ;

h1(z), for z ∈ V .

(v). Show h = 0: For all w in the unbounded path component of C \ {Γ} we have
W (Γ;w) = 0 (Remark 8.22). Hence there exists C ∈ R≥0 depending only on Γ and
||f ||Γ7 such that we have for large |w|:

|h(w)| = |h1(w)| ≤ C|| 1

z − w
||Γ
|w|→∞−→ 0.

Hence h = 0 by Liouville’s theorem (Corollary 5.18).

7Here ||f ||Γ := sup{ |f(z)| ; z ∈ {Γ} }.
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Theorem 8.27 (Cauchy’s theorem, homology version). Let U ⊆ C be open and
let Γ ∈ Z1(U,Z) be a 1-cycle in U . Then the following assertions are equivalent.
(i) Γ ∈ B1(U,Z) (i.e., Γ is nullhomologous in U).
(ii) For all holomorphic functions f : U → C one has∫

Γ

f dz = 0.

(iii) For all n ≥ 1 and all closed Rn-valued 1-forms ω on U one has∫
Γ

ω = 0.

Proof. We will only show (und later use) the equivalence of (i) and (ii).
“(ii) ⇒ (i)”: For all u ∈ C \ U we have

W (Γ;u) =

∫
Γ

1

z − u
dz

(ii)
= 0.

“(i) ⇒ (ii)”: Let f : U → C be holomorphic. Let a ∈ U \ {Γ}. Then F : U → C,
F (z) = (z − a)f(z) is holomorphic with F (a) = 0. Hence by Theorem 8.26 we have

0 = W (Γ; a)F (a) =
1

2πi

∫
Γ

F (z)

z − a
dz =

1

2πi

∫
Γ

f(z) dz.

Corollary 8.28. Let U ⊆ C be open, f : U → C holomorphic, and let Γ,Γ′ ∈ C1(U,Z)
be 1-chains. If Γ and Γ′ are homologous, then∫

Γ

f(z) dz =

∫
Γ′

f(z) dz.

Remark 8.29 (Poincaré duality). Let U ⊆ C be open. Set

H1
DR(U,C) := {C-valued closed 1-forms on U}/{C-valued exact C1 1-forms on U}.

Define H1(U,C) as homology classes of cycles which are C-linear combinations of paths.
Then Theorem 2.28 and Theorem 8.27 show that the bilinear form

H1(U,C)×H1
DR(U,C)→ C, (Γ, ω) 7→

∫
Γ

ω

is well-defined and non-degenerate. In particular we have an injective C-linear map

(8.29.1) H1
DR(U,C)→ HomC(H1(U,C),C), ω 7→ (Γ 7→

∫
Γ

ω).

Note that these spaces are not necessarily finite-dimensional (consider the example
U := C \ Z).
One can show that (8.29.1) is an isomorphism (e.g., W. Fulton: Algebraic Topology, A
first Course, Springer (1995), Theorem 15.11).
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9 Isolated singularities and meromorphic functions

(A) Laurent series

Definition 9.1. Let z0 ∈ C. A Laurent series in z0 is a series of the form

(*)
∞∑

n=−∞
an(z − z0)n,

more precisely, it is a pair of two series

∞∑
n=0

an(z − z0)n called regular part (German: Nebenteil)

−∞∑
n=−1

an(z − z0)n :=
∞∑
n=1

a−n(z − z0)−n called principal part (German: Hauptteil).

Let A ⊆ C be a subset. If these two series converge absolutely for z ∈ A (resp. converges
locally uniformly in z on A) we say that (*) converges absolutely (resp. converges locally
uniformly) on A. If that is the case, we also denote by

∑∞
n=−∞ an(z − z0)n the sum∑∞

n=0 an(z − z0)n +
∑−∞

n=−1 an(z − z0)n.

Proposition 9.2. Let z0 ∈ C, let 0 ≤ r < R ≤ ∞, and let A := { z ∈ C ; r < |z−z0| <
R } be the annulus centered at z0 with inner radius r and outer radius R. Let f : A→ C
be a holomorphic function. Then f has a Laurent series expansion

f(z) =
∞∑

n=−∞
an(z − z0)n

which converges absolutely and locally uniformly on A. For all ρ ∈ R with r < ρ < R
and for all n ∈ Z we have

(9.2.1) an =
1

2πi

∫
∂Bρ(z0)

f(z)

(z − z0)n+1
dz

and the Cauchy inequalities

(9.2.2) |an| ≤ ρ−n||f ||∂Bρ(z0).

We will see: Regular part converges on { z ∈ C ; |z − z0| < R }, and the principal part
converges on { z ∈ C ; |z − z0| > r }.

Proof. We may assume that z0 = 0. Choose r′ and R′ such that r < r′ < R′ < R. Then
the loops ∂Br′(0) and ∂BR′(0) are homologous in A, hence Γ := ∂BR′(0) − ∂Br′(0) ∈
B1(A,Z). As z 7→ f(z)

zn+1 is holomorphic in A, Cauchy’s theorem shows that (9.2.1) is
independant of ρ.
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Moreover, Theorem 8.26 gives for w with r′ < |w| < R′:

(*)

f(w) = W (Γ;w)f(w) =
1

2πi

∫
Γ

f(z)

z − w
dz

=
1

2πi

∫
∂BR′ (0)

f(z)

z − w
dz

︸ ︷︷ ︸
=:freg(w)

− 1

2πi

∫
∂Br′ (0)

f(z)

z − w
dz

︸ ︷︷ ︸
=:fprinc(w)

.

By homotopy invariance freg is independent of R′ as long as |w| < R′ < R. Therefore
freg can be extended holomorphically to BR(0). The same argument shows that fprinc

can be extended holomorphically to {w ∈ C ; |w| > r }.
By the Cauchy formula for discs (Theorem 5.8) we get freg(w) =

∑∞
n=0 anw

n with an
as in (9.2.1) for n ≥ 0.
To handle fprinc(w) we choose r′ with r < r′ < |w| and write

z − w = −w(1− z

w
).

For z ∈ ∂Br′(0) we have |z/w| < 1, so the geometric series

1

z − w
= − 1

w

1

1− z/w
= − 1

w

∞∑
n=0

( z
w

)n
= −

−∞∑
n=−1

wn

zn+1
.

converges. We can exchange the order of summation and integration and obtain

fprinc(w) =

∞∑
n=−1

 1

2πi

∫
∂Br′ (0)

f(z)

zn+1
dz


︸ ︷︷ ︸

=:an

wn.

Finally, (9.2.2) follows from (9.2.1) by using the standard estimate of path integrals.

Example 9.3. Consider the holomorphic function

f : C \ {0, 1} → C, f(z) =
1

z(z − 1)
.

(1) The Laurent series expansion in 0 on the annulus { z ∈ C ; 0 < |z| < 1 } is given
by

f(z) =
1

z − 1
− 1

z
= −1

z︸︷︷︸
principal part

+ (−
∞∑
n=0

zn)︸ ︷︷ ︸
regular part

.

(2) On the annulus { z ∈ C ; |z| > 1 } the Laurent series expansion in 0 is given by

f(z) =
1

z

1

z

1

1− 1/z

|1/z|<1
=

1

z2

∞∑
n=0

(
1

z

)n
=
−∞∑
n=−2

zn.
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(B) Isolated singularities

Definition 9.4. Let U ⊆ C be open, z0 ∈ U . If f : U \ {z0} → C is holomorphic, then
z0 is called isolated singularity of f .

Theorem and Definition 9.5. Let U ⊆ C be open, z0 ∈ U and let f : U \ {z0} → C
be holomorphic. Let r ∈ R>0 with Br(z0) ⊆ U , and let

(*) f(z) =
∞∑

n=−∞
an(z − z0)n

be the Laurent series expansion of f on the annulus Br(z0) \ {z0}. Then exactly one of
the following cases occur.
(a) The following equivalent conditions are satisfied.

(i) an = 0 for all n < 0, i.e., the principal part of (*) is zero.
(ii) There exists a (necessarily unique) holomorphic function f̃ : U → C such that

f̃ |U\{z0} = f .
(iii) f is bounded in some neighborhood of z0.
In this case z0 is called a removable singularity of f .

(b) The following equivalent conditions are satisfied.
(i) There exists k ∈ N such that a−k 6= 0 and an = 0 for all n < −k.
(ii) There exists k ∈ N and a holomorphic function h : U → C with h(z0) 6= 0 such

that
f(z) = (z − z0)−kh(z) for all z ∈ U \ {z0}.

(iii) One has limz→z0 |f(z)| =∞.
Moreover the integers k in (i) and in (ii) are equal.
In this case z0 is called a pole of f . The integer k ∈ N is called the order of the
pole z0.

(c) The following equivalent conditions are satisfied (Casorati-Weierstraß)
(i) There exist infinitely many n ∈ Z<0 with an 6= 0.
(ii) For every w0 ∈ C there exists a sequence (zn)n in U \{z0} such that limn zn = z0

and limn f(zn) = w0.
In this case z0 is called an essential singularity of f .

Proof. We may assume that z0 = 0. Clearly exactly one of the conditions (a), (b), or
(c) is satisfied.
(a). “(i) ⇔ (ii)”: Clear, as holomorphic functions are analytic.
“(ii) ⇔ (iii)”: Riemann extension theorem (Theorem 5.13).
(b). “(i) ⇔ (ii)”: Condition (i) means that the Laurent series expansion is of the form

f(z) = a−kz
−k + a−k+1z

−k+1 + · · ·+ a−1z
−1 +

∞∑
n=0

anz
n

with a−k 6= 0. Hence (i) and (ii) are equivalent.
“(ii) ⇒ (iii)”: Clear.
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“(iii) ⇒ (ii)”: We have to show that 0 is a removable singularity of z 7→ zkf(z).
For this we may make U smaller and can assume that f(z) 6= 0 for z ∈ U \ {0}.
Then g := 1/f : U \ {0} → C is holomorphic and nonzero, and limz→0 |f(z)| = ∞
implies limz→0 |g(z)| = 0. By the Riemann extension theorem, g can be extended to
a holomorphic function on U , again called g. After again making U smaller, we may
assume that the power series expansion g(z) =

∑∞
n=0 bnz

n of g in 0 converges on U .
Set k := inf{n ∈ N0 ; bn 6= 0 }. Then

g(z) = zkh̃(z),

where h̃ is holomorphic on U and h̃(0) 6= 0. Thus h̃ is nonzero on U and hence h := 1/h̃
is holomorphic on U with h(z) = zkf(z).
(c). “(ii) ⇒ (i)”: If (ii) is satisfied, z0 cannot be a removable singularity or a pole as
we have already shown. Hence (i) has to be satisfied.
“(i) ⇒ (ii)”: Assume that (ii) does not hold, i.e., there exist w0 ∈ C and ρ, ε > 0 such
that |f(z)− w0| ≥ ε for all z with 0 < |z| < ρ. The function

g : { z ∈ C ; 0 < |z| < ρ } → C, g(z) :=
1

f(z)− w0

is thus holomorphic and bounded by 1/ε. By the Riemann extension theorem, g can be
extended holomorphically to Bρ(0). But then f = w0 +1/g has a removable singularity
(if g(0) 6= 0) or a pole (if g(0) = 0) at 0.

Definition and Remark 9.6. Let U ⊆ C be open, z0 ∈ U . Let f : U \ {z0} → C be
holomorphic and let f(z) =

∑∞
n=−∞ an(z − z0)n be the Laurent series expansion of f

in z0. Assume that z0 is a removable singularity or a pole of f . Then

ordz0(f) := inf{ k ∈ Z ; ak 6= 0 } ∈ Z ∪ {∞}

is called the order of f in z0.
(1) Assume ordz0(f) <∞. Then

ordz0(f) = sup{ l ∈ Z ; z 7→ f(z)

(z − z0)l
has a removable singularity in z0}

= unique integer k ∈ Z such that lim
z→z0

f(z)

(z − z0)k
exists in C \ {0}.

(2) f has a pole in z0 if and only if ordz0(f) < 0 and in this case the order of the pole
is − ordz0(f).

Example 9.7.
(1) The holomorphic function C× → C, z 7→ exp(1

z ) has an essential singularity in 0:
Its Laurent series expansion in 0 is

0∑
n=−∞

zn

(−n)!
.
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(2) Let log : G := C \ { z ∈ R ; z < 0 } → C be the principal branch of the logarithm
on G (Definition 6.6). Then its power series expansion at z0 = 1 is given by

log(z) =
∞∑
n=1

(−1)n−1

n
(z − 1)n

for z ∈ B1(1). Thus G \ {1} → C, z 7→ log(z)
z−1 has a removable singularity at 1.

(C) Meromorphic functions

Definition 9.8. Let U ⊆ C be open. A meromorphic function f on U is a holomorphic
function f : U \P (f)→ C, where P (f) ⊆ U is a closed subset such that every z ∈ P (f)
is a pole of f .
We consider a meromorphic function f on U as a map f : U → Ĉ := C∪{∞} by setting
f(z) :=∞ for z ∈ P (f).
We denote by M (U) the set of meromorphic functions on U .

Remark 9.9. Let U ⊆ C be open.
(1) Every holomorphic function f on U is meromorphic on U (then P (f) = ∅).
(2) Let f be meromorphic on U . Then P (f) is discrete and closed in U .

Proof. If z is a pole of f , then there exists z ∈ W ⊆ U open such that f |W\{z} is
holomorphic (by definition of “pole”). Thus P (f) ∩W = {z} which implies {z} is
open in P (f). Therefore P (f) is discrete.

(3) Let (Ui)i∈I be an open covering of U , and let f : U → Ĉ be a map. Then f is
meromorphic if and only if f |Ui is meromorphic for all i ∈ I (use that a subset
S ⊆ U is closed in U if and only if S ∩ Ui is closed in Ui for all i ∈ I).

(4) Let f, g ∈ M (U). Define f + g as follows: Note that P (f) ∪ P (g) is again closed
in U and discrete8. For z ∈ U \ (P (f) ∪ P (g)) we define (f + g)(z) := f(z) + g(z).
Looking at the Laurent series expansion one sees that for z0 ∈ P (f) ∪ P (g)
(a) either z0 is a removable singularity of f + g. Then set

(f + g)(z0) := lim
z→z0

(f + g)(z).

(b) or z0 is a pole of f + g. Then set (f + g)(z0) :=∞.
In the same way, one defines the product fg. These definitions make M (U) into a
C-algebra.

8X topological space, Y,Z ⊆ X discrete and closed. Then Y ∪Z is discrete and closed in X. Indeed,
Y ∪ Z is clearly closed. Let x ∈ Y ∪ Z. We have to show that there exists x ∈W ⊆ X open such that
W ∩ (Y ∪ Z) = {x}. After possible switching Y and Z we may assume that x ∈ Y . Let x ∈ U ⊆ X be
open such that U ∩ Y = {x}. If x ∈ Z then there exist x ∈ V ⊆ X open such that V ∩ Z = {x} and
we may take W := U ∩ V . If x /∈ Z, we may take W := U ∩ (X \ Z) because X \ Z is open in X.

Note that the union of two discrete subspaces is not necessarily discrete: { 1/n ; n ∈ N } and {0}
are both discrete subspaces of R, but their union is not discrete.
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Proposition 9.10. Let U ⊆ C be open. Then a function f is meromorphic on U if
and only if for all z ∈ U there exists z0 ∈ Br(z0) ⊆ U open such that f = g/h, where
g, h : Br(z0) → C are holomorphic with h 6= 0 (but of course h(z0) = 0 is possible). In
this case

(9.10.1) ordz(f) = ordz(g)− ordz(h) for all z ∈ Br(z0)

One can show that there exist even globally holomorphic functions g, h : U → C such
that f = g/h.

Proof. Let f be meromorphic on U . For all z0 ∈ U we may choose Br(z0) such that
f(z) =

∑∞
n=k an(z − z0)n on Br(z0) \ {z0}, where k = ordz0(f) ∈ Z. If k ≥ 0, we set

g = f and h = 1 on Br(z0). If k < 0, set g :=
∑∞

n=0 an−k(z − z0)n and h = (z − z0)−k.
Conversely let z0 ∈ U and let g and h as above. Set d := ordz0(g) and e := ordz0(h).
Then g(z) = (z − z0)dg̃(z) and h(z) = (z − z0)eh̃(z), where (for some r > 0)

g̃, h̃ : Br(z0)→ C

holomorphic with g̃(z0) 6= 0 6= h̃(z0). By shrinking r we may assume g̃(z) 6= 0 6= h̃(z)
for all z ∈ Br(z0). Hence f(z) = (z − z0)d−ef̃(z), where f̃ := g̃/h̃ is holomorphic with
f̃(z0) 6= 0. Therefore f has an isolated singularity of order d − e at z0 and thus is
meromorphic on Br(z0). As z0 was arbitrary, this shows that f is meromorphic on U
(Remark 9.9 (3)).

Example 9.11. The tangens function tan := sin
cos is a meromorphic function on C. For

z ∈ C we have (see Exercise 23)

ordz(sin) 6= 0⇔ sin(z) = 0 ⇔ z ∈ πZ := {πk ; k ∈ Z },

ordz(cos) 6= 0⇔ cos(z) = 0 ⇔ z ∈ π
2

+ πZ := { π
2

+ πk ; k ∈ Z }.

For z ∈ πZ we have sin′(z) = cos(z) 6= 0 and thus ordz(sin) = 1. Analogously
ordz(cos) = 1 for z ∈ π

2 + πZ. Therefore:

ordz(tan) =


1, z ∈ πZ;

−1, z ∈ π
2 + πZ;

0, otherwise.

(D) Meromorphic functions and the Riemann sphere

We add ∞ to C and obtain a “complex manifold”. We first define Ĉ as topological
space.

Definition and Remark 9.12. We define Ĉ := C ∪ {∞}, where ∞ is some element
not contained in C.
Topology of Ĉ: A subset U of Ĉ is called open if either U ⊆ C and U is open in C or
if ∞ ∈ U and Ĉ \ U is a compact subspace of C. It is easy to check that this defines a
topology on Ĉ.
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For a sequence (zn)n of complex numbers we then have:

lim
n→∞

zn =∞ in Ĉ

⇔ ∀K ⊆ C compact : {n ; zn ∈ K } is finite

⇔ ∀R ∈ R>0 : {n ; zn ∈ BR(0) } is finite

⇔ lim
n→∞

|zn| =∞.

Example 9.13. The function

i : Ĉ→ Ĉ, z 7→ 1/z :=


1/z, z 6= 0,∞;

∞, z = 0;

0, z =∞

is a homeomorphism with i−1 = i.

We imagine Ĉ as a sphere:

Remark 9.14. Consider R3 with coordinates x1, x2, and x3, and identify C with the
(x1, x2)-plane by setting C 3 z = x1 + ix2. Let

S2 := { (x1, x2, x3) ∈ R3 ; x2
1 + x2

2 + x2
3 = 1 }

be the 2-sphere, let N := (0, 0, 1) ∈ S2 be its “north pole”, and let ϕ : S2 \ {N} → C
be the stereographic projection, i.e. ϕ(x) is the point at which the line connecting N
and x intersects C. We obtain a homeomorphism

ϕ : S2 \ {N} → C, (x1, x2, x3) 7→ 1

1− x3
(x1 + ix2)

whose inverse is given by x+ iy 7→ (x2 + y2 + 1)−1(2x, 2y, x2 + y2 − 1).
We extend ϕ to a bijection

ϕ̂ : S2 → Ĉ

by setting ϕ̂(N) :=∞. Then it is easy to check that ϕ̂ is a homeomorphism.
In particular we see that Ĉ is compact and path-connected (because S2 has these
properties). In fact, it is even simply connected (Exercise 40).

We consider Ĉ as “complex manifold of complex dimension 1 with an atlas consisting
of the two charts”

Φ0 : U0 := Ĉ \ {∞} ∼→ C, Φ0(z) = z;

Φ1 : U1 := Ĉ \ {0} ∼→ C, Φ1(z) = 1/z.

More precisely:
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Definition 9.15. Let U ⊆ Ĉ be open. A continuous map f : U → Ĉ is called holomor-
phic if for all i, j = 0, 1 the compositions

Φi(U ∩ Ui ∩ f−1(Uj))︸ ︷︷ ︸
⊆ C open

Φ−1
i−→ U ∩ Ui ∩ f−1(Uj)

f−→ Uj
Φj−→ C

are holomorphic.
Let V ⊆ Ĉ be open. A bijective map f : U → V is called biholomorphic if f : U → Ĉ
and f−1 : V → Ĉ are holomorphic.

Example 9.16. The map Ĉ→ Ĉ, z 7→ 1/z is biholomorphic.

Proposition 9.17. Let G ⊆ Ĉ be open and connected. Choose V0, V1 ⊆ G open and
connected such that G = V0 ∪V1 with ∞ /∈ V0 and 0 /∈ V1. Let f : G→ Ĉ be continuous
such that there exists z ∈ G with f(z) 6=∞.
Then f is a holomorphic map if and only if the two maps

f0 : V0 → Ĉ, z 7→ f(z),

f1 : { 1

z
∈ C ; z ∈ V1 } → Ĉ, w 7→ f(

1

w
)

are meromorphic.

Proof. By definition, f is holomorphic if and only if fi is holomorphic (in the sense of
Definition 9.15). Thus it suffices to show the following proposition.

Proposition 9.18. Let G ⊂ C be open and connected, f : G → Ĉ be a map such that
there exists z ∈ G with f(z) 6=∞. Then the following assertions are equivalent:
(i) f is meromorphic.
(ii) f is a holomorphic map in the sense of Definition 9.15.

Proof. “(i) ⇒ (ii)”. Clearly, f |U\P (f) is holomorphic. Let z0 ∈ P (f). Then The-
orem 9.5 (b) shows limz→z0 f(z) = ∞. Hence f is at least continuous in z0. More-
over, there exists z0 ∈ W ⊆ U open such that f(z) /∈ {0,∞} for all z ∈ W . Then
g : W \ {z0} → C, g(z) = 1/f(z) is holomorphic with limz→z0 g(z) = 0. Hence g can be
extended holomorphically to z0. This shows that f is a holomorphic map on W in the
sense of Definition 9.15.
“(ii) ⇒ (i)”. Set P (f) := { z ∈ U ; f(z) = ∞}. Then f |U\P (f) : U \ P (f) →
C is holomorphic by Definition 9.15. As f is continuous, P (f) is closed in U and
limz→z0 f(z) =∞ for all z0 ∈ P (f). Hence it remains to show that P (f) is discrete in
U (⇒ the points of P (f) are poles ⇒ f is meromorphic).
Choose z0 ∈ W ⊆ U open such that f(z) 6= 0 for all z ∈ W . Then g : W → C,
z 7→ 1/f(z) is holomorphic and P (f)∩W = { z ∈W ; g(z) = 0 }. Now f 6=∞ implies
g 6= 0. and hence { z ∈W ; g(z) = 0 } is discrete by Proposition 5.23.
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10 Calculus of Residues

(A) The residue theorem

Remark 10.1. Let U ⊆ C be open, z0 ∈ U , f : U \ {z0} holomorphic. Let

f(z) =
∞∑

n=−∞
an(z − z0)n

be its Laurent series expansion at z0. Choose r ∈ R>0 such that Br(z0) ⊆ U . Then the
Laurent series converges on some BR(z0) for some R > r and we have∫

∂Br(z0)

f(z) dz =
∞∑

n=−∞
an

∫
∂Br(z0)

(z − z0)n dz,

where we may interchange sum and integral because the series converges locally uni-
formly. But (z − z0)n has a primitive on U \ {z0} for n 6= −1, namely 1

n+1(z − z0)n+1.
Therefore

∫
γ(z − z0)n dz = 0 for every loop γ in U \ {z0} and for n 6= −1. Hence we

see that ∫
∂Br(z0)

f(z) dz = a−1

∫
∂Br(z0)

(z − z0)−1 dz = 2πia−1.

This also follows from (9.2.1).

Definition 10.2. Let U ⊆ C be open, z0 ∈ U , f : U \ {z0} → C holomorphic with
Laurent series f(z) =

∑∞
n=−∞ an(z − z0)n. Then

resz0(f) := a−1
(9.2.1)

=
1

2πi

∫
∂Br(z0)

f(z) dz

is called the residue of f at z0. Here we choose r ∈ R>0 such that Br(z0) ⊆ U .

For the following theorem we make the following remark. Let U ⊆ C be open, let
S ⊆ U be discrete and closed, and let Γ be a 1-cycle in U which is null-homologous in
U (i.e. W (Γ;u) = 0 for all u ∈ C \ U) such that S ∩ {Γ} = ∅. Then there are only
finitely many z ∈ S with W (Γ; z) 6= 0. Indeed

I := { z ∈ C \ {Γ} ; W (Γ; z) 6= 0 }

is compact (Remark 8.23) and contained in U because Γ is null-homologous in U (Ex-
ercise 34). As S is discrete and closed in U , S ∩ I is a closed and discrete subspace of
I. Therefore it is a discrete and compact space and hence finite.

Theorem 10.3 (Residue theorem). Let U ⊆ C be open, let S ⊆ U be discrete
and closed, let f : U \ S → C be holomorphic. Let Γ be a 1-cycle in U which is null-
homologous in U such that S ∩ {Γ} = ∅. Then∫

Γ

f(z) dz = 2πi
∑
z∈S

W (Γ; z) resz(f).
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Recall that a 1-cycle in U is automatically null-homologous if U is simply connected.

Proof. Let S′ = { z ∈ S ; W (Γ; z) 6= 0 }. Example 8.25 ahows that Γ is homologous
to
∑

z∈S′W (Γ, z)∂Bε(z) with ε > 0 such that Bε(z) ⊆ U and Bε(z) ∩ Bε(z′) = ∅ for
z, z′ ∈ S′ with z 6= z′. Hence∫

Γ

f(z) dz
8.27
=

∑
z∈S

W (Γ; z)

∫
∂Bε(z)

f(z) dz

10.2
= 2πi

∑
z∈S

W (Γ; z) resz(f)

Remark 10.4. Let U ⊆ C be open, z0 ∈ U , f, g : U \ {z0} → C be holomorphic,

f(z) =

∞∑
n=−∞

an(z − z0)n, g(z) =

∞∑
n=−∞

bn(z − z0)n

their Laurent series expansions.
(1) For a ∈ C one has

resz0(af + g) = a resz0(f) + resz0(g).

(2) Assume that f and g are meromorphic on U , i.e. there exist only finitely many
r < 0 with ar 6= 0 or br 6= 0. The Laurent series converge absolutely, we have by
Cauchy’s formula

(*) f(z)g(z) =

∞∑
n=−∞

cn(z − z0)n, cn =
∑
k,l∈Z
k+l=n

akbl,

where the sum is finite because of our assumption. In particular:

resz0(fg) =
∑

k+l=−1

akbl.

(3) Assume that f has a pole of order 1 at z0 and that g is holomorphic in z0 (more
precisely, g can be extended holomorphically into z0). Then (2) shows

resz0(fg) = a−1b0 = g(z0) resz0(f).

(4) Assume that f has a zero of order 1 in z0 and that g is holomorphic in z0. Then
the −1-st coefficient of the Laurent series of 1/f is 1/a1 = 1/f ′(z0) by (*), hence
by (3):

resz0
g

f
=

g(z0)

f ′(z0)

Example 10.5. (1)

resπ/2 tan(z) =
sin(π/2)

cos′(π/2)
= −1.

(2)
cos(z)

z2
=

1

z2

(
1− z2

2
+ . . .

)
=

1

z2
− 1

2
+ terms of higher order.

Hence res0( cos(z)
z2 ) = 0.
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(B) Counting zeros

Proposition 10.6. Let U ⊆ C be open, f : U → Ĉ meromorphic, z0 ∈ U . If ordz0(f) <
∞, then

ordz0(f) = resz0
f ′

f
.

Proof. Exercise

Proposition 10.7. Let U ⊆ C be open, f : U → Ĉ meromorphic, set

Z(f) = { z ∈ C ; f(z) = 0 }, P (f) := { z ∈ C ; f(z) =∞}.

Let Γ be a null-homologous cycle in U such that {Γ} ∩ (P (f) ∪ Z(f)) = ∅. Then

1

2πi

∫
Γ

f ′

f
dz =

∑
u∈U

W (Γ;u) ordu(f) =
∑

u∈P (f)∪Z(f)

W (Γ;u) ordu(f).

Note that W (Γ;u) = 0 for all but finitely many u ∈ P (f) ∪ Z(f) because P (f) ∪ Z(f)
is discrete and closed in U (see the remark before the Residue theorem).

Proof. Residue theorem + Proposition 10.6.

(C) Limits and fibers

Definition 10.8. Let G ⊆ C be a domain, f : G→ Ĉ meromorphic. Assume that f is
not constant. For w ∈ C we set

Nf (w) :=
∑
z∈G

f(z)=w

ordz(f(z)− w) ∈ N0 ∪ {∞}.

In other words: Nf (w) is the number of z ∈ G with f(z) = w (w-places) with multi-
plicity.

Proposition 10.9. Let G ⊆ C be a domain, and let (fn)n be a sequence of holomorphic
functions fn : G → C that converges locally uniformly against f : G → C. Let k ∈ N0

and w ∈ C and assume that Nfn(w) ≤ k for all n ∈ N. Then either f = w constant or
Nf (w) ≤ k.

Proof. By Weierstraß’ theorem of convergence (Theorem 5.14) we know that f is holo-
morphic. We may assume that w = 0 (replace fn by fn − w). Assume that f 6= 0 but
there exist z1, . . . , zm ∈ G with

∑m
i=1 ordzi(f) > k. The set Z(f) := { z ∈ G ; f(z) = 0 }

is discrete, hence there exist discs Di = Bri(zi) such that Di ⊆ G and Di∩Z(f) = {zi}
for all i. Now choose ε > 0 such that ε < |f(z)| for all z in the compact set

⋃m
i=1 ∂Di.

As (fn)n converges uniformly on compact sets towards f , there exists n ∈ N such that

|f(z)− fn(z)| < ε < |f(z)|

for all z ∈
⋃m
i=1 ∂Di. By Rouché’s theorem, f and fn have the same number of zeros

in
⋃m
i=1Di (with multiplicity). Contradiction.

61



Corollary 10.10. Let G ⊆ C be a domain, and let (fn)n be a sequence of holomorphic
functions fn : G → C that converges locally uniformly against f : G → C. If all fn are
injective, then f is either injective or constant.

Proof. 1st proof. This follows from Proposition 10.9 because

f is injective ⇔ Nf (w) ≤ 1 for all w ∈ C.

Here “⇐” is clear. Conversely, let f be injective and assume that there exists w ∈ C
such that Nf (w) > 1. Then w = f(z0) for some z0 ∈ G such that ordz0(f − f(z0)) > 1.
By restricting to an open nieghborhood of z0 and by precomposing with a biholomorphic
map (under both operations f stays injective), we may assume that f(z) = f(z0) + zr

with r = ordz0(f − f(z0)) > 1 (Theorem 7.3). But this map is clearly not injective.
Contradiction.
2nd proof. A different argument goes as follows: fn is injective if and only if for all
a ∈ G the holomorphic function gn,a := gn : G \ {a} → C, z 7→ fn(z) − fn(a) has
no zero (i.e. Ngn(0) = 0). As (gn)n converges locally uniformly to ga : G \ {a} → C,
z 7→ f(z)− f(a), Proposition 10.9 implies for all a ∈ G that either ga = 0 or that g has
no zero. If there exists a ∈ G such that ga = 0, then f is constant and ga = 0 for all
a ∈ G. Hence otherwise ga has no zero for all a ∈ G and hence f is injective.

(D) Application: Fourier transform

Motivation: Let G be a locally compact abelian topological group (e.g. G = (R,+)
or G = (S1, ·) with S1 = { z ∈ C ; |z| = 1 }). Let µG be a translation invariant
measure on the Borel σ-algebra B(G) of G, a so-called Haar measure (e.g. µR = λ1 the
Lebesgue measure, or µS1 the image of λ1 under the map [0, 1]→ S1, x 7→ exp(2πix)).
Let Ĝ := HomGrp(G,S1) (Pontryagin dual).
Let f ∈ L1(G,B(G), µG;C). Define its Fourier transform

f̂(χ) :=

∫
G

χ(t)f(t) dµG(t)

Examples:
(1) For G = S1 one has an isomorphism

Z ∼−→ Ĝ = Hom(S1, S1), n 7→ (z 7→ z−n)

and for f : S1 → C integrable:

f̂(n) =

∫
S1

tnf(t) dµS1 =

1∫
0

e2πintf(e2πit) dt, n ∈ Z

cf. Proseminar on Fourier analysis.
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(2) For G = R one has an isomorphism

R 7→ Ĝ = Hom(R, S1), τ 7→ (t 7→ e−2πiτt).

and hence for f : R→ R integrable:

f̂(τ) =

∫
R

e−2πiτtf(t) dλ1(t), τ ∈ R.

Interpretation: Let (t 7→ f(t)) ∈ L1(R) be a time-dependent function (t measured
in seconds). Then f̂(τ) measures whether the frequency |τ | (τ measured in hertz) is
present in f .

Theorem 10.11. Let f be meromorphic on C such that P (f) is finite and P (f)∩R = ∅.
Assume that there exists a constant M ∈ R such that

|f(z)| ≤ M

|z|

for |z| sufficiently large. Let τ ∈ R<0. Then

∞∫
−∞

e−2πiτtf(t) dt = 2πi
∑
z∈H

resz(e
−2πiτzf(z)),

where H := { z ∈ C ; Im(z) > 0 } is the upper half plane.

Proof. For simplicity, take τ = −1 (the proof in the general case is the same). Let
A,B ∈ R>0 and set D := A + B. By the residue theorem we have for A and B
sufficiently large

2πi
∑
z∈H

resz(e
2πizf(z)) =

∫
−A,−A+iD,B+iD,B,−A

e2πizf(z) dz.

It suffices to show that the integral over the three sides other than the bottom side
of this rectangle tend to 0 as A, B tend to infinity. For this we first note that for
x = Re(z) and y = Im(z) we have

e2πiz = e2πixe−2πy.

For the top side of the rectangle we have

| −
∫

−A+iD,B+iD

e2πizf(z) dz| = |
B∫
−A

e2πixe−2πDf(x+ iD) dx|

≤ e−2πD

B∫
−A

|f(x+ iD)| dx

≤ e−2πDM

D
(A+B) = Me−2π(A+B)

A,B→∞−→ 0.
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For the right side we have

|
∫

B+iD,B

e2πizf(z) dz| = |
D∫

0

e2πiBe−2πyf(B + iy) dy|

≤ M

B

D∫
0

e−2πy dy

=
M

2πB
(1− e−2πD)

A,B→∞−→ 0.

A similar estimate shows that the integral over the left side tends to 0.

11 Riemann mapping theorem

Notation: In this section we let E := { z ∈ C ; |z| < 1 } be the open unit disc and
H := { z ∈ C ; Im(z) > 0 } the upper half plane.

(A) Automorphisms of the disc and of the upper half plane

Definition 11.1. Let U ⊆ Ĉ be open. A biholomorphic automorphism of U is a
biholomorphic map f : U → U . We denote by Authol(U) the set of biholomorphic
automorphisms of U , endowed with a group structure by composition:

Authol(U)×Authol(U)→ Authol(U), (f, g)→ f ◦ g.

Example 11.2.
(1) For a, b ∈ C, a 6= 0, the maps C→ C, z 7→ az+b are biholomorphic automorphism9.
(2) For all ϕ ∈ R the rotations z 7→ eiϕz by the angle ϕ are biholomorphic automor-

phisms of Br(0) for all r > 0.

Proposition 11.3 (Schwarz lemma). Let f : E→ E be holomorphic with f(0) = 0.
Then
(1) |f(z)| ≤ |z| for all z ∈ E.
(2) If there exists 0 6= z0 ∈ E with |f(z0)| = |z0|, then f is a rotation.
(3) |f ′(0)| ≤ 1, and if equality holds, then f is a rotation.

9In fact, these are the only biholomorphic automorphisms of C: If f : C→ C is any automorphism
of C, then f is a homeomorphism. Thus for all R ∈ R>0, f−1(BR(0)) is compact. In other words: If

we define f̂ : Ĉ → Ĉ by f̂(z) := f(z) for z ∈ C and f̂(∞) := ∞, then for every open neighborhood U

of ∞ in Ĉ, f̂−1(U) is an open neighborhood of ∞. This shows that f̂ is continuous in ∞ and hence a

holomorphic map Ĉ → Ĉ. By Exercise 41(e), f̂ is of the form z 7→ az+b
cz+d

with ( a bc d ) ∈ GL2(C). As f̂
has no pole in C, one has c = 0 and hence f is of the form z 7→ (a/d) + (b/d)z.
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Proof. (1). f(0) = 0 ⇒ ord0(f) ≥ 1 ⇒ ord0(f(z)/z) = ord0(f)− ord0(z) = ord0(f)−
1 ≥ 0. Thus z 7→ g(z) := f(z)/z is holomorphic in E with g(0) = f ′(0). Let r < 1.
For z ∈ ∂Br(0) one has |g(z)| ≤ 1/r (because |f(z)| < 1). By Corollary 7.11 we have
|g(z)| ≤ 1/r for all z ∈ Br(0). Letting r → 1 gives (a).
(2).

|f(z0)| = |z0|
(1)⇒ |g| has a maximum in E

7.10⇒ g is constant

⇒f(z) = cz for some c ∈ C
|f(z0)|=|z0|⇒ |c| = 1.

(3). (1) ⇒ |g(z)| ≤ 1 for all z ∈ E and hence |g(0)| = |f ′(0)| ≤ 1. If equality
holds, g = c for some constant c ∈ C by the maximum principle. Then |g(0)| = 1 ⇒
|c| = 1.

Corollary 11.4. Let f : E→ E be a biholomorphic automorphism with f(0) = 0. Then
f is a rotation.

Proof. f(0) = 0 and f−1(0) = 0. Applying the Proposition 11.3 (1) to f and f−1

implies |f(z)| = |z| for all z ∈ E. Hence Proposition 11.3 (2) implies that f is a
rotation.

Proposition 11.5. Let f : E→ E be a biholomorphic automorphism. Then there exist
ϕ ∈ R and α ∈ E such that

(*) f(z) = eiϕ
α− z
1− ᾱz

.

Proof. For α ∈ E define

(11.5.1) ψα : E→ C, ψα(z) =
α− z
1− ᾱz

(i). Claim: ψα is a biholomorphic automorphism E → E (and hence f as in (*) is a
biholomorphic automorphism); see Exercise 27 (b).
For u ∈ C with |u| = 1 write u = eiθ. Then

ψα(eiθ) =
α− eiθ

eiθ(e−iθ − α)
= e−iθ

w

w̄
, with w := α− eiθ.

Therefore |ψα(u)| = 1. Hence ψα(z) ∈ E for all z ∈ E (Corollary 7.11).
Moreover ψα is its own inverse: For z ∈ E we have

(ψα ◦ ψα)(z) =
α− α−z

1−ᾱz
1− ᾱ α−z

1−ᾱz

=
α− |α|2z − α+ z

1− ᾱz − |α|2 + ᾱz

=
(1− |α|2)z

1− |α|2

= z.
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(ii). Now let f : E → E be a biholomorphic automorphism. Then there exists α ∈ E
such that f(α) = 0. Thus g := f ◦ ψα is a biholomorphic automorphism of E with
g(0) = 0, hence g(z) = eiϕz for some ϕ ∈ R (Corollary 11.4) and thus

f = g ◦ ψ−1
α = g ◦ ψα.

Proposition and Definition 11.6. The map

f : H→ E, f(z) :=
z − i
z + i

is biholomorphic. It is called the Cayley map.

Proof. Clearly f is holomorphic. Moreover for z ∈ H, we have |z − i| < |z + i|, thus f
maps H to E. We claim that

g : E→ C, g(w) := i
1 + w

1− w

yields an inverse of f .
We first show g(w) ∈ H for w ∈ E: Let w = u+ iv with u, v ∈ R. Then

Im(g(w)) = Re

(
1 + u+ iv

1− u+ iv

)
= Re

(
(1 + u+ iv)(1− u− iv)

(1− u)2 + v2

)
=

1− u2 + v2

(1 + u)2 + v2
> 0

since w ∈ E and hence u2 < 1. Moreover for w ∈ E,

f(g(w)) =
i(1+w

1−w − 1)

i(1+w
1−w + 1)

=
1 + w − 1 + w

1 + w + 1− w
= w,

and similarly g(f(z)) = z for z ∈ H10.

Remark 11.7. Let U, V ⊆ C be open, and let F : U → V be biholomorphic. Then

F ∗ : Authol(V )→ Authol(U), α 7→ F−1 ◦ α ◦ F

is an isomorphism of groups whose inverse is given by β 7→ F ◦ β ◦ F−1.

Theorem 11.8. For M =
(
a b
c d

)
∈ SL2(R) the map

fM : H→ C, z 7→ az + b

cz + d

10One can also show that GL2(C) → Authol(Ĉ), M := ( a bc d ) 7→ (fM : z 7→ az+b
cz+d

) is a group homo-

morphism and for M,N ∈ GL2(C) we have fM = fN if M = λN for some λ ∈ C×. Then the Cayley
map is fM for M =

(
1 −i
1 i

)
with inverse fN with N = 1

2i

(
i i
−1 1

)
.
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yields a biholomorphic automorphism of H, and every biholomorphic automorphism of
H is of this form. More precisely, the map

α : SL2(R)→ Authol(H), M 7→ fM

is a surjective group homomorphism with kernel µ2 := {( 1 0
0 1 ) ,

(−1 0
0 −1

)
}.

Finally, for all z, w ∈ H there exists M ∈ SL2(R) such that fM (z) = w.

Therefore we see that Authol(H) ∼= PSL2(R) := SL2(R)/µ2. The last assertion means
that SL2(R) acts transitively on H.

Proof. (i). For M =
(
a b
c d

)
∈ SL2(R) and z ∈ H we have

(*) Im(fM (z)) =
(ad− bc)Im(z)

|cz + d|2
> 0,

hence fM (H) ⊆ H.
(ii). For M,M ′ ∈ SL2(R) one has fM ◦ fM ′ = fMM ′ (straightforward calculation).
Hence fM is an automorphism with inverse fM−1 and M 7→ fM is a group homomor-
phism SL2(R)→ Authol(H).
(iii). Let F : H→ E be the Cayley map, thus F = fC with C =

(
1 −i
1 i

)
. For ϕ ∈ R let

rϕ : E→ E, z 7→ eiϕz be the rotation by ϕ ∈ R. Then

F ∗(rϕ) = fMθ
, with Mθ =

(
cos θ − sin θ
sin θ cos θ

)
, θ := −ϕ/2

by an easy calculation (use rϕ = fRϕ with Rϕ =
(
eiϕ 0
0 1

)
and CMθ = eiθRϕC, hence

fC ◦ fMθ
= fRϕ ◦ fC).

(iv). Proof of the last assertion: It suffices to show that for all z ∈ H there exists
M = Mz ∈ SL2(R) such that fM (z) = i (then fM−1

w
fMz(z) = w for z, w ∈ H). Let

c ∈ R such that c2 = Im(z)/|z|2 and set M1 :=
(

0 −c−1

c 0

)
∈ SL2(R). Then (*) shows

that Im(fM1(z)) = 1, say fM1(z) = u + i with u ∈ R. For M2 =
(

1 −u
0 1

)
∈ SL2(R) we

have fM2(w) = w − u in particular

fM2M1(z)
(ii)
= fM2(fM1(z)) = u+ i− u = i.

(v). “M 7→ fM is surjective”: Let f ∈ Authol(H) and let β ∈ H with f(β) = i. By (iv)
there exists N ∈ SL2(R) with fN (i) = β. Therefore g := f ◦ fN satisfies g(i) = i and
F ◦ g ◦ F−1 ∈ Authol(E) fixes 0. Thus F ◦ g ◦ F−1 is a rotation and hence g = fMθ

for
some θ ∈ R by (iii). Therefore f = fMθN−1 .
(vi). “ker(α) = µ2”: Clearly fM = idH for M ∈ µ2 and hence µ2 ⊆ ker(α). Conversely,
let M =

(
a b
c d

)
∈ SL2(R) with fM = idH. (iii) shows that fM (i) = i implies a = d and

b = −c. Then an easy calculation shows that fM (1 + i) = 1 + i implies b = c = 0.
Therefore a = d = ±1 because M ∈ SL2(R).
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(B) The theorem of Arzela-Ascoli

Definition 11.9. Let V be a finite-dimensional R-vector space endowed with some
norm || · ||. Let X ⊆ V be open. Let (Y, d) be a metric space, C(X,Y ) := { f : X →
Y ; f continuous}. Let Φ ⊆ C(X,Y ) be a subset.
(1) Φ is called normal if every sequence in Φ has a subsequence that converges locally

uniformly (the limit is not necessarily in Φ).
(2) Φ is called uniformly bounded on compact subspaces if for each compact subspace

K ⊆ X the subset { f(z) ; z ∈ K, f ∈ Φ } ⊆ Y is bounded.
(3) Then Φ is called equicontinuous on compact subspaces (German: gleichgradig stetig

auf kompakten Teilräumen) if for each compact subspace K ⊆ X and for all ε > 0
there exists δ > 0 such that for all z, w ∈ K one has

||z − w|| < δ ⇒ d(f(z), f(w)) < ε, for all f ∈ Φ.

Theorem 11.10 (Theorem of Arzela-Ascoli). Let V and Y be a finite-dimensional
R-vector spaces and let X ⊆ V be open. Endow V and Y with norms || · ||. Let Φ ⊆
C(X,Y ) be a subset. If Φ is uniformly bounded and equicontinuous on compact subsets,
then Φ is normal.

There are more general and different variants of this theorem, for instance for an arbi-
trary compact space X (e.g., Bourbaki: General topology, Chap. X, §2) but then one
has to be more carefully in the definitions (Definition 11.9).

Proof. Let (fn)n be a sequence in Φ. Choose a sequence (wj)j∈N in X such that
{wj ; j ∈ N } is dense in X (e.g., identify V ∼= Rd as vector spaces and choose a
numbering of X ∩Qd). By hypothesis, the set { fn(w1) ; n ∈ N } is bounded in Y and
hence there exists an infinite subset N1 ⊆ N such that (fn(w1))n∈N1 converges in Y .
Continuing the process we obtain for all j ∈ N infinite subsets Nj ⊆ Nj−1 such that
(fn(wj))n∈Nj converges in Y . For all m ∈ N choose nm ∈ Nm such that nm → ∞ for
m → ∞ and set gm := fnm ∈ Φ. Then for all j ∈ N the sequence (gm(wj))m≥j is a
subsequence of (fn(wj))n∈Nj and hence converges for all j ∈ N.
We claim that (gm)m converges locally uniformly. By Remark 2.19 it suffices to show
that (gm)m converges uniformly on every compact subspace K of X. Let ε > 0. Choose
δ > 0 such that for x, y ∈ K one has

||x− y|| < δ ⇒ ||f(x)− f(y)|| < ε for all f ∈ Φ.

As {wj ; j ∈ N } is dense in X, there exists for all x ∈ X a wj with ||x − wj || < δ; in
other words, X ⊆

⋃
j∈NBδ(wj). As K is compact, there exists a finite subset J ⊂ N

such that K ⊆
⋃
j∈J Bδ(wj). Pick N ∈ N so large that for n,m > N we have

||gm(wj)− gn(wj)|| < ε ∀ j ∈ J.

Let z ∈ K, say z ∈ Bδ(wj) for some j ∈ J . Then we have for n,m > N :

||gn(z)− gm(z)|| ≤ ||gn(z)− gn(wj)||+ ||gn(wj)− gm(wj)||+ ||gm(wj)− gm(z)|| < 3ε.

Hence (gm|K)m is a Cauchy sequence in the R-vector space C(K;Y ) endowed with
the supremum norm. As this space is a Banach space, (gm)m converges uniformly on
K.
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(C) Montel’s theorem

Theorem 11.11 (Montel’s theorem). Let U ⊆ C be open and let Φ ⊆ O(U) =
{ f : U → C ; f holomorphic} be a subset which is uniformly bounded. Then Φ is
normal.

Remark 11.12. For real analytic functions the analogue of Montel’s theorem is wrong.
Consider fn : (0, 1) → R, fn(x) = sin(nx). Then Φ = { fn ; n ∈ N } is uniformly
bounded, but there exists no subsequence of (fn)n that converges even pointwise.

Proof of Montel’s theorem. By the Theorem of Arzela-Ascoli it suffices to prove that Φ
is equicontinuous on compact subspaces. Let K ⊆ U be compact. Choose r ∈ R>0 such
that B3r(z) ⊆ U for all z ∈ K. Let z, w ∈ K with |z − w| < r and let γ := ∂B2r(w).
Then for ζ ∈ {γ} one has |ζ − w| = 2r and |ζ − z| ≥ r. Therefore

(*)

∣∣∣∣ 1

ζ − z
− 1

ζ − w

∣∣∣∣ =
|z − w|

|ζ − z||ζ − w|
≤ |z − w|

2r2
.

Let K ′ be the compact set { z ∈ C ; dist(z,K) ≤ 2r } ⊆ U . By hypothesis there exists
B ∈ R such that |f(z)| ≤ B for all f ∈ Φ and all z ∈ K ′.
Then Cauchy integral formula yields for all z, w ∈ K with |z−w| < r and for all f ∈ Φ:

|f(z)− f(w)| =

∣∣∣∣∣∣ 1

2πi

∫
γ

f(ζ)

(
1

ζ − w
− 1

ζ − w

)
dζ

∣∣∣∣∣∣
(∗)
≤ 1

2π
4πrB

|z − w|
2r2

= C|z − w| with C := B/r.

Hence for all ε > 0 we have for δ = min{r, ε/C} that for all z, w ∈ K and f ∈ Φ:

|z − w| < δ ⇒ |f(z)− f(w)| < ε.

Therefore Φ is equicontinuous on K.

(D) Riemann mapping theorem

Definition 11.13. Two open subsets U and U ′ of C are called biholomorphic equivalent
or conformal equivalent if there exists a biholomorphic map f : U → U ′.

Example 11.14.
(1) We have seen in Proposition 11.6 that E and H are biholomorphic equivalent.
(2) The open simply connected sets C and E are not biholomorphic equivalent (Liou-

ville’s theorem implies that every holomorphic function C→ E is constant).
(3) (1) and (2) imply that C and H are not biholomorphic equivalent.
(4) The domains C\R≤0 and { z ∈ C ; −π < Im(z) < π } are biholomorphc equivalent

via the principal branch of logarithm (Example 7.5).
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(5) If G ⊆ C is connected (resp. simply connected) and U ⊆ C open is biholomorphic
equivalent to G, then U is connected (resp. simply connected).

Theorem 11.15 (Riemann mapping theorem). Let G ⊆ C be a simply connected
domain with G 6= C. Let z0 ∈ G. Then there exists a unique biholomorphic map
F : G→ E such that

F (z0) = 0 and F ′(z0) ∈ R>0.

Corollary 11.16. Any two simply connected domains G ( C and G′ ( C are biholo-
morphic equivalent.

Proof of the Riemann mapping theorem. (i). Unicity:
Let F1, F2 : G → E be biholomorphic maps that satisfy the above conditions. Then
H := F1 ◦ F−1

2 is an automorphism of E with H(0) = 0. Hence H(z) = eiϕz for some
ϕ ∈ R (Corollary 11.4). As H ′(0) = F ′1(0)F ′2(0)−1 ∈ R>0 we have eiϕ = 1 and hence
F1 = F2.
(ii). Claim: G is biholomorphic equivalent to an open subset of E that contains 0.
As G 6= C there exists α ∈ C \ G. Then z 7→ z − α is non-zero on G. As G is simply
connected, there exists a function

L : G 7→ C

with eL(z) = z − α (Proposition 6.4). In particular, L is injective.
Fix w ∈ G. Then there exists ε > 0 such that

(*) Bε(L(w) + 2πi) ∩ L(G) = ∅.

Otherwise there would exist a sequence (zn)n in G such that limn L(zn) = L(w) +
2πi. Applying exp we would obtain limn zn = w because exp is continuous. Hence
limn L(zn) = L(w); contradiction. Now consider

F : G→ C, F (z) :=
1

L(z)− (L(w) + 2πi)
.

As L is injective, F is injective. Hence F : G→ F (G) is biholomorphic (Corollary 7.4).
By (*) one has |F (z)| ≤ 1/ε for all z ∈ G, hence F (G) is bounded. We may therefore
translate and rescale F to obtain a biholomorphic map with 0 ∈ F (G) ⊆ E.
(iii). By (ii) we may assume that 0 ∈ G ⊆ E. Define

Φ := { f : G→ E ; f holomorphic, injective and f(0) = 0}.

Then Φ 6= ∅ because Φ contains the inclusion, and Φ is uniformly bounded because all
functions in Φ take only values in E. Moreover, (5.8.2) shows that there exists C ∈ R>0

with |f ′(0)| ≤ C for all f ∈ Φ. Hence

s := sup
f∈Φ
|f ′(0)|.
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exists. We will show that there exists f ∈ Φ with |f ′(0)| = s.
Choose a sequence (fn)n in Φ such that limn |f ′n(0)| = s. By Montel’s theorem (Theo-
rem 11.11), this sequence has a subsequence (fnk)k that converges locally uniformly to
some function f : G → C. By Theorem 5.14, f is holomorphic and limk f

′
nk

= f ′. In
particular |f ′(0)| = s.
We claim that f ∈ Φ: Clearly we have f(0) = 0. Since s ≥ 1 (because z 7→ z is in
Φ), f is non-constant and hence injective by Corollary 10.10. By continuity we have
|f(z)| ≤ 1 for all z ∈ G and from the maximum modulus principle we see that |f(z)| < 1
for all z ∈ G. This shows the claim.
(iv). Claim: f : G→ E is surjective (

7.4⇒ f is biholomorphic).
Assume there exists α ∈ E \ f(G). Consider the automorphism (11.5.1)

ψα : E→ E, ψα(z) =
α− z
1− ᾱz

.

Then G′ := ψα(f(G)) ⊆ E is simply connected with 0 /∈ G′. Thus there exists a
holomorphic square root function r2 : G′ → E, i.e., r2 satisfies r2(z)2 = z for all z ∈ G′
(Remark 6.9). Set β := r2(α) and define

F := ψβ ◦ r2 ◦ ψα ◦ f : G→ E.

Then F is holomorphic, injective with F (0) = 0 and hence F ∈ Φ. Set r := |α| < 1.
Then |β| =

√
r. An easy calculation using ψ′α(z) = ᾱα−1

(1−ᾱz)2 shows that |F ′(0)| =

C|f ′(0)| with

C := |ψ′β(β)r′2(α)ψ′α(0)| = r + 1

2
√
r
> 1.

This is a contradiction to the maximality of |f ′(0)|.
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