Complex Analysis

Torsten Wedhorn

These are the lecture notes to my 2nd year Bachelor lecture in the summer semester 2013 on complex analysis in one variable. The manuscript differs from the lecture: It does not contain any pictures, and the lecture is in German.

Contents

1	Hol	omorphic maps	2		
	(A)	Complex numbers and complex vector spaces	2		
	(B)	Complex differentiable maps	3		
	(C)	Holomorphy in one variable	6		
2	Path integrals 8				
	(A)	Vector valued 1-forms	8		
	(B)	Path integrals	9		
	(C)	Limits and Integral	13		
	(D)	Digression: Connected and path-connected spaces	13		
	(E)	Existence of primitives	15		
3	Homotopy 1				
	(A)	Homotopy and simply connected spaces	16		
	(B)	Homotopy invariance	19		
	(C)	The fundamental group	22		
4	Hol	omorphic 1-forms	22		
4	Hol (A)	omorphic 1-forms Complex path integrals	22 22		
4	Hol (A) (B)	omorphic 1-forms Complex path integrals Cauchy's theorem and Cauchy integral formula	22 22 25		
4 5	Hol (A) (B) Pro	omorphic 1-forms Complex path integrals Cauchy's theorem and Cauchy integral formula perties of holomorphic functions I	 22 22 25 27 		
4 5	Hol (A) (B) Pro (A)	omorphic 1-forms Complex path integrals Cauchy's theorem and Cauchy integral formula perties of holomorphic functions I Analytic functions	 22 22 25 27 27 		
4 5	Hol (A) (B) Pro (A) (B)	omorphic 1-forms Complex path integrals Cauchy's theorem and Cauchy integral formula perties of holomorphic functions I Analytic functions Holomorphic functions are analytic	 22 22 25 27 27 28 		
4 5	Hol (A) (B) Pro (A) (B) (C)	omorphic 1-forms Complex path integrals Cauchy's theorem and Cauchy integral formula cauchy's theorem and Cauchy integral formula perties of holomorphic functions I Analytic functions Holomorphic functions are analytic Uniform limits of holomorphic functions	 22 25 27 27 28 32 		
4 5	Hol (A) (B) Pro (A) (C) (D)	omorphic 1-forms Complex path integrals Cauchy's theorem and Cauchy integral formula perties of holomorphic functions I Analytic functions Holomorphic functions are analytic Uniform limits of holomorphic functions Liouville's theorem	 22 25 27 27 28 32 33 		
4	Hol (A) (B) Pro (A) (B) (C) (D) (E)	omorphic 1-forms Complex path integrals Cauchy's theorem and Cauchy integral formula perties of holomorphic functions I Analytic functions Holomorphic functions are analytic Uniform limits of holomorphic functions Liouville's theorem Identity theorem	 22 25 27 27 28 32 33 33 		
4 5 6	Hol (A) (B) Pro (A) (B) (C) (D) (E) Spe	omorphic 1-forms Complex path integrals Cauchy's theorem and Cauchy integral formula perties of holomorphic functions I Analytic functions Holomorphic functions are analytic Uniform limits of holomorphic functions Liouville's theorem Identity theorem cial functions	 22 22 25 27 28 32 33 33 34 		
4 5 6	Hol (A) (B) Pro (A) (B) (C) (D) (E) Spe (A)	omorphic 1-forms Complex path integrals Cauchy's theorem and Cauchy integral formula perties of holomorphic functions I Analytic functions Holomorphic functions are analytic Uniform limits of holomorphic functions Liouville's theorem Identity theorem cial functions Extension of real analytic functions	22 22 25 27 27 28 32 33 33 34 34		
4 5 6	Hol (A) (B) Pro (A) (B) (C) (D) (E) Spec (A) (B)	omorphic 1-forms Complex path integrals Cauchy's theorem and Cauchy integral formula perties of holomorphic functions I Analytic functions Holomorphic functions are analytic Uniform limits of holomorphic functions Liouville's theorem Identity theorem cial functions Extension of real analytic functions	22 25 27 27 28 32 33 33 34 34 34		

7	Properties of holomorphic functions II	37
	(A) Biholomorphic maps and local description of holomorphic functions	37
	(B) Open Mapping Theorem	39
	(C) Maximum modulus principle	39
8	Homology and the winding number	40
	(A) Digression: Covering Spaces	40
	(B) The winding number	42
	(C) First Homology group	43
	(D) Homology, winding numbers, and homotopy	45
	(E) Cauchy's theorem, homology version	48
9	Isolated singularities and meromorphic functions	51
	(A) Laurent series	51
	(B) Isolated singularities	53
	(C) Meromorphic functions	55
	(D) Meromorphic functions and the Riemann sphere	56
10	Calculus of Residues	59
	(A) The residue theorem	59
	(B) Counting zeros	61
	(C) Limits and fibers	61
	(D) Application: Fourier transform	62
11	Riemann mapping theorem	64
	(A) Automorphisms of the disc and of the upper half plane	64
	(B) The theorem of Arzela-Ascoli	68
	(C) Montel's theorem	69
	(D) Riemann mapping theorem	69

1 Holomorphic maps

(A) Complex numbers and complex vector spaces

Reminder 1.1.

- (1) \mathbb{C} is a field, and \mathbb{R} is a subfield. Let $\mathbb{C}^{\times} := \mathbb{C} \setminus \{0\}$.
- (2) Every $z \in \mathbb{C}$ has a unique representation z = x + iy with $x = \operatorname{Re}(z) \in \mathbb{R}$ the real part of $z, y = \operatorname{Im}(z) \in \mathbb{R}$ the imaginary part of z and with $i \in \mathbb{C}$ such that $i^2 = -1$. We denote by

$$|z| := \sqrt{x^2 + y^2} \in \mathbb{R}^{\ge 0}$$

the *absolute value of* z and by

$$\bar{z} := x - iy \in \mathbb{C}$$

the complex conjugate of z.

(3) For $z, w \in \mathbb{C}$ one has

$$|z| = 0 \Leftrightarrow z = 0, |z + w| \le |z| + |w|,$$
 (\$\Rightarrow (\mathbb{C}, ||) is normed \$\mathbb{R}\$-vector space)
 $|zw| = |z||w|.$

(4) Every $z \in \mathbb{C}^{\times}$ has a unique expression of the form

$$z = r e^{i\varphi},$$

where $r = |z| \in \mathbb{R}^{>0}$ and $\varphi \in [0, 2\pi) = \mathbb{R}/2\pi\mathbb{Z}$ is the argument of z.

Remark 1.2. Let V be a finite-dimensional \mathbb{C} -vector space. Recall that all norms on V are equivalent and hence define the same topology. We always endow V with this topology.

If $V = \mathbb{C}^n$, then a subset $U \subseteq V$ is open if and only if for all $z = (z_1, \ldots, z_n) \in U$ there exists $\varepsilon > 0$ such that

$$B_{\varepsilon}(z) := \{ w \in \mathbb{C}^n ; |w_i - z_i| < \varepsilon \text{ for all } i = 1, \dots, n \} \subseteq U.$$

Remark 1.3. Let V, W be \mathbb{C} -vector spaces.

(1) We may V also consider as an \mathbb{R} -vector space with

$$\dim_{\mathbb{R}}(V) = 2\dim_{\mathbb{C}}(V),$$

where $2 \cdot \infty := \infty$.

(2) For a map $A: V \to W$ we have

A is \mathbb{C} -linear $\Leftrightarrow A$ is \mathbb{R} -linear and A(iv) = iA(v) for all $v \in V$

We denote the \mathbb{C} -linear maps $V \to W$ by $\operatorname{Hom}_{\mathbb{C}}(V, W)$ and the \mathbb{R} -linear maps $V \to W$ by $\operatorname{Hom}_{\mathbb{R}}(V, W)$.

(B) Complex differentiable maps

Notation: Let V, V' be always finite-dimensional \mathbb{C} -vector spaces.

Definition 1.4. $U \subseteq V$ open, $f: U \to V'$ a map.

(1) Let $\tilde{z} \in U$. Then f is called *complex differentiable in* \tilde{z} if there exists a \mathbb{C} -linear map

$$Df(\tilde{z})\colon V\to V'$$

such that

(1.4.1)
$$\lim_{z \to \tilde{z}} \frac{f(z) - f(\tilde{z}) - Df(\tilde{z})(z - \tilde{z})}{\|z - \tilde{z}\|} = 0,$$

where $\|\cdot\|$ is any norm on V.

(2) f is called *holomorphic on* U if f is continuously complex differentiable on U, i.e. f is complex differentiable in all $\tilde{z} \in U$ and the map

$$U \to \operatorname{Hom}_{\mathbb{C}}(V, V'), \qquad \tilde{z} \mapsto Df(\tilde{z})$$

is continuous.

(3) We set

$$\mathcal{O}(U, V') := \{ f : U \to V' ; f \text{ holomorphic} \},$$
$$\mathcal{O}(U) := \mathcal{O}(U, \mathbb{C}).$$

Remark 1.5. $U \subseteq V$ open, $f: U \to V'$ a map. Then f is complex differentiable in \tilde{z} if and only if f is differentiable in \tilde{z} (in the sense of real analysis) and the \mathbb{R} -linear map $Df(\tilde{z}): V \to V'$ is \mathbb{C} -linear. In particular the results of Analysis 2 show:

(1) $Df(\tilde{z})$ is uniquely determined by (1.4.1).

- (2) If f is complex differentiable in \tilde{z} , then f is continuous in \tilde{z} .
- (3) f is holomorphic in $U \Leftrightarrow f$ is a \mathcal{C}^1 -map and $Df(\tilde{z})$ is \mathbb{C} -linear for all $\tilde{z} \in U$.

Proposition 1.6 (Chain rule). V, V', V'' finite-dimensional \mathbb{C} -vector spaces, $U \subseteq V$, $U' \subseteq V'$ open. Let $f: U \to V'$, $g: U' \to V''$ holomorphic with $f(U) \subseteq U'$. Then $g \circ f: U \to V''$ is holomorphic and for all $\tilde{z} \in U$:

$$D(g \circ f)(\tilde{z}) = Dg(f(\tilde{z})) \circ Df(\tilde{z}).$$

Proof. This follows immediately from 1.5 and the analogous assertion for real differentiable maps (because the composition of \mathbb{C} -linear maps is again \mathbb{C} -linear).

Example 1.7.

- (1) An \mathbb{R} -linear map $A: V \to V'$ is holomorphic if and only if A is \mathbb{C} -linear: One has $DA(\tilde{z}) = A$ for all $\tilde{z} \in V$.
- (2) The \mathbb{R} -linear map $\mathbb{C} \to \mathbb{C}, z \mapsto \overline{z}$ is *not* holomorphic.
- (3) The addition $V \oplus V \to V$, $(z, w) \mapsto z + w$ and the *i*-th projection $\mathbb{C}^n \to \mathbb{C}$, $(z_1, \ldots, z_n) \mapsto z_i \ (i \in \{1, \ldots, n\})$ are \mathbb{C} -linear and hence holomorphic.
- (4) The multiplication $\mu \colon \mathbb{C} \oplus \mathbb{C} \to \mathbb{C}, (z, w) \mapsto zw$ is a \mathcal{C}^1 -map with

$$D\mu(\tilde{z},\tilde{w})\colon \mathbb{C}^2\to\mathbb{C},\qquad (u,v)\mapsto u\tilde{w}+v\tilde{z}$$

for all $(\tilde{z}, \tilde{w}) \in \mathbb{C}^2$. Hence $D\mu(\tilde{z}, \tilde{w})$ is \mathbb{C} -linear and μ is holomorphic.

(5) Applying the chain rule, (3) and (4) several times we see that polynomial mappings

$$\mathbb{C}^n \to \mathbb{C}, \qquad (z_1, \dots, z_n) \mapsto \sum_{i_1, \dots, i_n \in \mathbb{N}_0} a_{i_1 \dots i_n} z_1^{i_1} \dots z_n^{i_n}$$

(where $a_{i_1...i_n} \in \mathbb{C}$ is zero for all but finitely many i_1, \ldots, i_n) are always holomorphic.

Corollary 1.8. Let $U \subseteq V$ open.

(1) $\mathcal{O}(U, V')$ is a \mathbb{C} -subvectorspace of the space of all maps $U \to V'$. For $f, g \in \mathcal{O}(U, V')$, $\alpha \in \mathbb{C}$ one has

$$D(\alpha f + g)(\tilde{z}) = \alpha Df(\tilde{z}) + Dg(\tilde{z}).$$

(2) Let $f, g: U \to \mathbb{C}$ be holomorphic. Then the product $fg: U \to \mathbb{C}$ is holomorphic and for $\tilde{z} \in U$ one has (by Example 1.7 (4) and the chain rule):

$$D(fg)(\tilde{z}) = f(\tilde{z})Dg(\tilde{z}) + g(\tilde{z})Df(\tilde{z}).$$

In particular, $\mathcal{O}(U)$ is a commutative \mathbb{C} -algebra.

Theorem 1.9 (Inverse Function). Let $U \subseteq V$ open and let $f: U \to V'$ be holomorphic. Let $\tilde{z} \in U$ such that $Df(\tilde{z}): V \to V'$ is invertible. Then there exist open neighborhoods $\tilde{z} \in W \subseteq V$ and $f(\tilde{z}) \in W' \subseteq V'$ such that $f_{|W}: W \to W'$ is bijective and such that $g := (f_{|W})^{-1}: W' \to V$ is holomorphic.

Proof. The real analogue of the inverse function theorem implies the existence of W and W' such that g is a \mathcal{C}^1 -map with $Dg(\tilde{z}') = Df(g(\tilde{z}'))^{-1}$ for all $\tilde{z}' \in W'$. Therefore $Dg(\tilde{z}')$ is \mathbb{C} -linear for all $\tilde{z} \in W'$. Hence g is holomorphic. \square

Theorem 1.10. Let $U \subseteq V$ be open. The following assertions are equivalent for a map $f: U \to V'$:

- (i) f is holomorphic.
- (ii) f is complex differentiable in \tilde{z} for all $\tilde{z} \in U$.
- (iii) f is analytic, i.e., locally given by a power series.¹
- (iv) For all $\tilde{z} \in U$, f is partially complex differentiable in \tilde{z} (i.e., there exists a basis (e_1, \ldots, e_n) of V such that for some $\varepsilon > 0$ the maps

$$\{t \in \mathbb{C} ; |t| < \varepsilon\} \to V', \qquad t \mapsto f(\tilde{z} + te_i)$$

are complex differentiable for all i = 1, ..., n).

Analogous equivalences for real differentiable functions are completely wrong!

Proof. We will give a full proof of this theorem only for $V = V' = \mathbb{C}$ in Section 5. Here we only briefly indicate how one could proceed. Note that "(i) \Rightarrow (ii) \Rightarrow (iv)" are trivial. In fact, (ii) implies that (iv) holds for every basis (e_1, \ldots, e_n) .

1st step: Show that one can assume that $V' = \mathbb{C}$. This is easy: By choosing a linear isomorphismus $V' \cong \mathbb{C}^m$ we may assume that $V' = \mathbb{C}^m$. Then $f = (f_1, \ldots, f_m)$ with $f_j: U \to \mathbb{C}$. Then check that each assertion holds for f if and only if it holds for all f_j . 2nd step: Prove that all assertions are equivalent if $V = V' = \mathbb{C}$ (note that in this case one trivially has "(ii) \Leftrightarrow (iv)", and "(iii) \Rightarrow (i)" has essentially already shown in Analysis 1. Thus it suffices to show "(ii) \Rightarrow (i) \Rightarrow (iii)". This will be done in Section 5. 3rd step: The second step shows "(iv) \Leftrightarrow (iii)". Hence it remains to show that "(iv) \Rightarrow (i)". This a deep theorem due to Hartogs (see e.g.: L. Hörmander: An introduction to complex analysis in several variables, Theorem 2.2.8).

¹We leave this assertion deliberately vague.

(C) Holomorphy in one variable

Notation: In this subsection we identify $\mathbb{C} \xrightarrow{\sim} \mathbb{R}^2$, $z \mapsto (x, y)$, where $x = \operatorname{Re}(z)$, $y = \operatorname{Im}(z)$.

Remark 1.11. An \mathbb{R} -linear map $A: \mathbb{C} \to \mathbb{C}$ given by a matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{R})$ is \mathbb{C} -linear if and only if A(iz) = iA(z) for all $z \in \mathbb{C}$. But the multiplication with i is given by the matrix $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ (i is the rotation by $\pi/2$). Hence A is \mathbb{C} -linear if and only if

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \Leftrightarrow a = d, b = -c.$$

In this case one has:

Proposition 1.12. Let $U \subseteq \mathbb{C}$ be open, let $f: U \to \mathbb{C}$ be a map, and let $\tilde{z} \in U$. Then the following assertions are equivalent.

- (i) f is complex differentiable in \tilde{z} .
- (ii) f is real differentiable (as a map $f : \mathbb{R}^2 \supseteq U \to \mathbb{R}^2$) and f satisfies the Cauchy-Riemann equations:

1.12.1)
$$\frac{\partial \operatorname{Re}(f)}{\partial x}(\tilde{z}) = \frac{\partial \operatorname{Im}(f)}{\partial y}(\tilde{z}), \qquad \frac{\partial \operatorname{Im}(f)}{\partial x}(\tilde{z}) = -\frac{\partial \operatorname{Re}(f)}{\partial y}(\tilde{z}).$$

(iii) The limit

(

(1.12.2)
$$f'(\tilde{z}) := \lim_{\substack{h \to 0 \\ h \in \mathbb{C} \setminus \{0\}}} \frac{f(\tilde{z}+h) - f(\tilde{z})}{h}$$

exists.

In this case $Df(\tilde{z})$ is the linear map $\mathbb{C} \to \mathbb{C}$, $z \mapsto f'(\tilde{z})z$ and we usually call $f'(\tilde{z})$ the (complex) derivative of f in \tilde{z} . Moreover we have:

(1.12.3)
$$f' = \frac{\partial \operatorname{Re}(f)}{\partial x} + i \frac{\partial \operatorname{Im}(f)}{\partial x} \stackrel{(1.12.1)}{=} \frac{\partial \operatorname{Im}(f)}{\partial y} - i \frac{\partial \operatorname{Re}(f)}{\partial y}.$$

Proof. "(i) \Leftrightarrow (ii)": Follows from Remark 1.11 because $Df(\tilde{z})$ is given by the matrix

$$Df(\tilde{z}) = \begin{pmatrix} \frac{\partial \operatorname{Re}(f)}{\partial x} & \frac{\partial \operatorname{Re}(f)}{\partial y} \\ \frac{\partial \operatorname{Im}(f)}{\partial x} & \frac{\partial \operatorname{Im}(f)}{\partial y} \end{pmatrix}.$$

"(i) \Leftrightarrow (iii)": f is complex differentiable in \tilde{z} $\Leftrightarrow \exists \mathbb{C}$ -linear map $A \colon \mathbb{C} \to \mathbb{C}$ such that

$$0 = \lim_{z \to \tilde{z}} \frac{f(z) - f(\tilde{z}) - A(z - \tilde{z})}{|z - \tilde{z}|}$$

 $\Leftrightarrow \exists a \in \mathbb{C}$ such that

$$0 = \lim_{z \to \tilde{z}} \frac{f(z) - f(\tilde{z}) - a(z - \tilde{z})}{z - \tilde{z}} = \left(\lim_{z \to \tilde{z}} \frac{f(z) - f(\tilde{z})}{z - \tilde{z}}\right) - a.$$

Finally (1.12.3) follows from (1.11.1).

Corollary 1.13. $U \subseteq \mathbb{C}$ open, $f: U \to \mathbb{C}$. Then f is holomorphic, if (1.12.2) exists for all $\tilde{z} \in U$ and if $f': U \to \mathbb{C}$ is continuous.

We will see that the continuity of f' is automatic.

Example 1.14.

(1) Let $n \in \mathbb{N}_0$ and let $f \colon \mathbb{C} \to \mathbb{C}, f(z) = z^n$. Then

$$f'(z) = nz^{n-1}$$

(same proof as in the real case; alternatively use product rule and induction by n). Hence the linearity of the derivative shows that for $a_0, \ldots, a_n \in \mathbb{C}$ and $p: \mathbb{C} \to \mathbb{C}$, $p(z) = a_n z^n + \cdots + a_1 z + a_0$ one has

$$p'(z) = na_n z^{n-1} + \dots + a_1.$$

(2) The same proof as in real analysis shows: Let $U \subseteq \mathbb{C}$ be open, $f, g: U \to \mathbb{C}$ be holomorphic with $g(z) \neq 0$ for all $z \in U$. Then

$$\frac{f}{g} \colon U \to \mathbb{C}, \qquad z \mapsto \frac{f(z)}{g(z)}$$

is holomorphic, and

$$\left(\frac{f}{g}\right)'(z) = \frac{f'(z)g(z) - f(z)g'(z)}{g(z)^2}$$

for $z \in U$. In particular

$$(z^n)' = nz^{n-1}$$

for $n \in \mathbb{Z}$ and $z \in \mathbb{C}^{\times}$.

Proposition 1.15. Let $U \subseteq \mathbb{C}$ be open, $f: U \to \mathbb{C}$ holomorphic. Then the following assertions are equivalent.

- (i) f'(z) = 0 for all $z \in U$.
- (ii) f is locally constant.
- (iii) $\operatorname{Re}(f): U \to \mathbb{R}$ is locally constant.
- (iv) Im(f) is locally constant.
- (v) $|f|: U \to \mathbb{R}^{\geq 0}$ is locally constant.
- (vi) $\overline{f}: U \to \mathbb{C}, \ \overline{f}(z) := \overline{f(z)}$ is holomorphic.

Recall: X topological space, M set, $t: X \to M$ map. Then:

t locally constant

- $:\Leftrightarrow \forall x \in X \exists x \in U \subseteq X \text{ open, such that } t_{|U} \text{ is constant}$
- $\Leftrightarrow t$ is continuous, if we endow M with the discrete topology

Proof. "(i) \Leftrightarrow (ii)": This has been proved in Analysis 2. "(ii) \Rightarrow (iii) – (vi)": Obvious. "(iii) \Rightarrow (i)":

$$\operatorname{Re}(f)$$
 locally constant $\Rightarrow \frac{\operatorname{Re}(f)}{\partial x} = \frac{\operatorname{Re}(f)}{\partial y} = 0 \stackrel{\operatorname{CR equation}}{\Rightarrow} f' = 0.$

"(iv) \Rightarrow (i)": Same argument.

"(vi) \Rightarrow (iii)": f, \bar{f} holomorphic $\Rightarrow u := \operatorname{Re}(f) = (f+\bar{f})/2$ holomorphic. But $\operatorname{Im}(u) = 0$ and thus we can apply "(iv) \Rightarrow (ii)" for u instead of f to see that u is locally constant. "(v) \Rightarrow (vi)": Clear if f = 0. As |f| is locally constant we can assume that $f(z) \neq 0$ for all $z \in U$. Then: 1/f is a holomorphic function $\Rightarrow \bar{f} = |f|^2/f$ holomorphic.

2 Path integrals

(A) Vector valued 1-forms

Notation: In this section we denote by V and W finite-dimensional \mathbb{R} -vector spaces. Later we will be mainly interested in the case $V = W = \mathbb{C}$.

Definition 2.1. Let $U \subseteq V$ be a subset. A *W*-valued 1-form on *U* is a map

$$\omega \colon U \to \operatorname{Hom}_{\mathbb{R}}(V, W).$$

Note that it makes sense to say that ω is continuous. Moreover if $U \subseteq V$ is open, then it makes sense to say that ω is a \mathcal{C}^k -map $(k \in \mathbb{N}_0 \cup \{\infty\})$.

In the language of "Reelle Analysis" it would have been better to define that ω is a map that sends $p \in U$ to an alternating 1-multilinear form $\omega(p): T_p(U) \to W$ and to remark that $T_p(U) = V$ for all $p \in U$.

Example 2.2. Let $U \subseteq V$ be open and let $F: U \to W$ be real differentiable. Then dF := DF is a W-valued 1-form $(DF(p) \in \operatorname{Hom}_{\mathbb{R}}(V, W)$ for all $p \in U$).

Remark 2.3 (Coordinates). We now assume $V = \mathbb{R}^m$. For i = 1, ..., m we call

$$x^i \colon \mathbb{R}^m \to \mathbb{R}, \qquad (p_1, \dots, p_m) \mapsto p_i$$

the coordinate functions.

Then x^i is \mathbb{R} -linear and $dx^i(p) = x^i \in \operatorname{Hom}_{\mathbb{R}}(\mathbb{R}^m, \mathbb{R})$ for all $p \in \mathbb{R}^m$. Hence for all $p \in \mathbb{R}^m$, $(dx^1(p), \ldots, dx^m(p))$ is a basis of $\operatorname{Hom}_{\mathbb{R}}(\mathbb{R}^m, \mathbb{R})$ and for every \mathbb{R} -valued 1-form ω on $U \subseteq \mathbb{R}^m$ we have

$$\omega(p) = f_1(p)dx^1(p) + \dots + f_m(p)dx^m(p)$$

for unique functions $f_i: U \to \mathbb{R}$.

More generally, every $\alpha \in \text{Hom}_{\mathbb{R}}(\mathbb{R}^m, W)$ is of the form $\alpha = w_1 dx^1(p) + \cdots + w_m dx^m(p)$ for unique $w_1, \ldots, w_m \in W$, where

$$w_i dx^i(p) \colon \mathbb{R}^m \to W, \qquad y = (y_1, \dots, y_m) \mapsto dx^i(p)(y)w_i = y_i w_i.$$

Hence every W-valued 1-form ω on $U \subseteq \mathbb{R}^m$ is of the form

$$\omega = f_1 dx^1 + \dots + f_m dx^m$$

for unique functions $f_i: U \to W$ und we have

(2.3.1)
$$(f_i dx^i)(p)(y_1, \dots, y_m) = y_i f_i(p).$$

Moreover $(k \in \mathbb{N}_0 \cup \{\infty\})$:

$$\omega$$
 is a \mathcal{C}^k 1-form $\Leftrightarrow f_1, \ldots, f_m$ are \mathcal{C}^k maps.

Remark 2.4. Let $V = \mathbb{R}^m$, $U \subseteq \mathbb{R}^m$ open, $F: U \to W$ real differentiable. Then one has

$$dF = \frac{\partial F}{\partial x_1} dx^1 + \dots + \frac{\partial F}{\partial x_m} dx^m,$$

where $\frac{\partial F}{\partial x_i} : U \to W$ denotes the *i*-th partial derivative of *F*.

Definition 2.5. Let $U \subseteq \mathbb{R}^m$ be open and let $\omega = \sum_{i=1}^m f_j dx^j \colon U \to \operatorname{Hom}_{\mathbb{R}}(V, W)$ be a *W*-valued 1-form.

- (1) ω is called *exact* if there exists a real differentiable function $F: U \to W$ such that $\omega = dF$.
- (2) ω is called *closed* if ω is continuously differentiable and for all $i, j \in \{1, \ldots, m\}$ one has

$$\frac{\partial f_i}{\partial x_j} = \frac{\partial f_j}{\partial x_i}$$

Proposition 2.6. Let $U \subseteq \mathbb{R}^m$ offen and let ω be a continuously differentiable W-valued 1-form on U. Then:

$$\omega exact \Rightarrow \omega closed$$

Proof. This has been proved in Analysis 2: It is a direct calculation: As ω is exact, $\omega = dF$ for a \mathcal{C}^2 -map $F: U \to W$. And we know from Analysis 2 that

$$\frac{\partial^2 F}{\partial x_i \partial x_j} = \frac{\partial^2 F}{\partial x_j \partial x_i}.$$

(B) Path integrals

Notation: Let $a, b \in \mathbb{R}$, a < b. Let V be a finite-dimensional \mathbb{R} -vector space, $W = \mathbb{R}^n$, $n \in \mathbb{N}$.

Definition 2.7.

(1) Let X be a topological space. A continuous map $\gamma: [a, b] \to X$ is called *path in* X (German: Weg in X). The point $\gamma(a)$ is called the *startpoint*, $\gamma(b)$ is called the *endpoint* of γ . We say that γ is a *path from* $\gamma(a)$ to $\gamma(b)$. We also set:

$$\{\gamma\} := \gamma([a, b]) \subseteq X.$$

- (2) The path γ is called *closed* or a *loop* (German: *Schleife*), if $\gamma(a) = \gamma(b)$.
- (3) A path $\gamma : [a, b] \to X$ is called *constant*, if there exists $x_0 \in X$ such that $\gamma(t) = x_0$ for all $t \in [a, b]$. We then denote γ by ε_{x_0} .
- (4) Let X = V. A path $\gamma \colon [a, b] \to V$ is called \mathcal{C}^k , if
 - (a) $\gamma_{|(a,b)}$ is a \mathcal{C}^k -map. For $l \leq k$ we denote by $\gamma^{(l)} \colon (a,b) \to V$ its *l*-th derivative. (b) For all $l \in \mathbb{N}$ with $l \leq k$ the limits

$$\gamma^{(l)}(a) := \lim_{t \searrow a} \gamma^{(l)}(t), \quad \text{and} \quad \gamma^{(l)}(b) := \lim_{t \nearrow b} \gamma^{(l)}(t)$$

exist.

(5) A path $\gamma : [a, b] \to V$ is called *piecewise* \mathcal{C}^k if there exist $a = t_0 < t_1 < \cdots < t_r = b$ such that $\gamma_{|[t_{i-1}, t_i]}$ is a \mathcal{C}^k -path for all $i = 1, \ldots, r$.

Definition 2.8. Let $\gamma: [a, b] \to V$ be a \mathcal{C}^1 -path. Let $\omega: \{\gamma\} \to \operatorname{Hom}(V, W)$ be a continuous 1-form. Define

$$\int_{\gamma} \omega := \int_{a}^{b} \omega(\gamma(t))(\gamma'(t)) dt \qquad \left(= \int_{[a,b]} \gamma^* \omega \right)^2 \qquad \in W$$

Here we calculate the integral for every component of W.

More generally, if γ is piecewise C^1 with $a = t_0 < t_1 < \cdots < t_r = b$ such that $\gamma_{|[t_{i-1},t_i]}$ is a C^1 -path, then set

$$\int\limits_{\gamma} \omega := \sum_{i=1}^r \int\limits_{\gamma \mid [t_{i-1},t_i]} \omega$$

If $S \subseteq V$ with $\{\gamma\} \subseteq S$ and $\omega \colon S \to \operatorname{Hom}(V, W)$ continuous, we write $\int_{\gamma} \omega$ instead of $\int_{\gamma} \omega_{|\{\gamma\}}$.

Example 2.9. Let $x \in V$ and let $\varepsilon_x \colon [a, b] \to U$ be the constant path with value x. Then $\varepsilon'_x(t) = 0$ for all $t \in [a, b]$ and hence

$$\int_{\varepsilon_x} \omega = 0$$

for all ω .

Remark 2.10. Let $\gamma: [a, b] \to U$ be a piecewise \mathcal{C}^1 -path and let $\omega, \eta: \{\gamma\} \to \text{Hom}(V, W)$ be a continuous 1-forms.

(1) For all $\lambda \in \mathbb{R}$ one has

(*)
$$\int_{\gamma} (\lambda \omega + \eta) = \lambda \int_{\gamma} \omega + \int_{\gamma} \eta.$$

If W is a \mathbb{C} -vector space, (*) holds also for $\lambda \in \mathbb{C}$.

²In the language of "Reelle Analysis"

(2) Let $c, d \in \mathbb{R}$ with c < d and let $\varphi \colon [c, d] \to [a, b]$ be \mathcal{C}^1 and bijective with $\pm \varphi'(t) \ge 0$ for all $t \in [c, d]$. Then

$$\int_{\gamma \circ \varphi} \omega = \pm \int_{\gamma} \omega.$$

Proof. This has been proved in Analysis 2.

Example 2.11. Let $\gamma: [a, b] \to V = \mathbb{R}^m$, $t \mapsto (\gamma_1(t), \ldots, \gamma_m(t))$ be a \mathcal{C}^1 -path. Let $\omega = \sum_{i=1}^m f_i dx^i$ a W-valued 1-form with $f_i: \{\gamma\} \to W$ continuous. Then

$$\int_{\gamma} \omega = \int_{a}^{b} \omega(\gamma(t))(\gamma'(t)) dt$$
$$= \int_{a}^{b} \sum_{i=1}^{m} (f_{i} dx^{i})(\gamma(t))(\gamma'(t)) dt$$
$$\stackrel{(2.3.1)}{=} \int_{a}^{b} \sum_{i=1}^{m} \gamma'_{i}(t) f_{i}(\gamma(t)) dt.$$

Example 2.12. Let $W = \mathbb{C}$, $V = \mathbb{R}^2$ with coordinates x and y. Consider the 1-form on $\mathbb{R}^2 \setminus \{0\}$

$$\omega = \frac{1}{x + iy}(dx + idy) = \frac{(x - iy)dx + (y + ix)dy}{x^2 + y^2}.$$

Let $\gamma \colon [0, 2\pi] \to \mathbb{R}^2, t \mapsto (\cos t, \sin t)$. Then one has

$$\int_{\gamma} \omega = \int_{0}^{2\pi} (-\sin(t)(\cos(t) - i\sin(t)) + \cos(t)(\sin(t) + i\cos(t))) dt$$
$$= \int_{0}^{2\pi} i(\sin^2(t) + \cos^2(t)) dt$$
$$= 2\pi i.$$

Remark 2.13. Let $\gamma: [a, b] \to V$ be a path. Let $\varphi: [0, 1] \to [a, b], \varphi(t) = a + (b - a)t$. Then:

$$\gamma$$
 (piecewise) $\mathcal{C}^k \Leftrightarrow \gamma \circ \varphi \colon [0,1] \to V$ (piecewise) \mathcal{C}^k .

Moreover $\int_{\gamma} \omega = \int_{\gamma \circ \varphi} \omega$ (if γ is piecewise \mathcal{C}^1 , ω continuous W-valued 1-form).

Upshot: Can usually assume that paths are defined on [0, 1].

Definition 2.14. Let X be a topological space. (1) Let $\gamma: [0,1] \to X$ be a path. Define

$$\gamma^{-} \colon [0,1] \to X, \gamma^{-}(t) = \gamma(1-t)$$

the *inverse* path.

(2) Let $\gamma, \delta \colon [0,1] \to X$ be two paths with $\gamma(1) = \delta(0)$. Define a path

$$\gamma \cdot \delta \colon [0,1] \to X, \qquad t \mapsto \begin{cases} \gamma(2t), & 0 \le t \le 1/2; \\ \delta(2t-1), & 1/2 \le t \le 1. \end{cases}$$

Remark 2.15. Let $\gamma, \delta \colon [0,1] \to V$ piecewise \mathcal{C}^1 -paths. Then Remark 2.10 shows

$$\int_{\gamma^{-}} \omega = -\int_{\gamma} \omega, \quad \text{for all } \omega \colon \{\gamma\} \to \operatorname{Hom}(V, W) \text{ continuous,}$$
$$\int_{\gamma \cdot \delta} \omega = \int_{\gamma} \omega + \int_{\delta} \omega, \quad \text{for all } \omega \colon \{\gamma\} \cup \{\delta\} \to \operatorname{Hom}(V, W) \text{ continuous,}$$

where for the second equality we also assume that $\gamma(1) = \delta(0)$.

Proposition 2.16. Let $U \subseteq V$ be open, $F: U \to W$ a \mathcal{C}^1 -map, and let $\gamma: [a, b] \to U$ be a piecewise \mathcal{C}^1 -path. Then

$$\int_{\gamma} dF = F(\gamma(b)) - F(\gamma(a)).$$

In particular $\int_{\gamma} \omega = 0$ if ω is a continuous exact 1-form on U and γ is closed.

Proof. This has been proved in Analysis 2.

Example 2.17. Let $V = \mathbb{R}^2$ with coordinates x and y, and let $W = \mathbb{C}$. (1) (Stupid example) The 1-form $\omega = (x + iy^2)dx + x^3dy$ on \mathbb{R}^2 is not closed: Set

$$\begin{split} f_x \colon \mathbb{R}^2 \to \mathbb{C}, \qquad f_x(x,y) = x + iy^2; \\ f_y \colon \mathbb{R}^2 \to \mathbb{C}, \qquad f_y(x,y) = x^3. \end{split}$$

Then

$$\frac{\partial f_x}{\partial y}(x,y) = 2iy, \qquad \frac{\partial f_y}{\partial x}(x,y) = 3x^2$$

(2) (Intelligent example) The 1-form on $\mathbb{R}^2 \setminus \{0\}$ (already considered in Example 2.12)

$$\omega = \frac{1}{x + iy}(dx + idy)$$

is closed (easy calculation or see 4.2), but we have seen in Example 2.12 that $\int_{\gamma} \omega \neq 0$ for the closed path $\gamma \colon [0, 2\pi] \to \mathbb{C}, t \mapsto (\cos t, \sin t)$. This shows that ω is not exact (Proposition 2.16).

(C) Limits and Integral

Definition 2.18. Let X be a topological space, (Y, d) metric space. Let $(f_n)_n$ be a sequence of functions $f_n: X \to Y$, and let $f: X \to Y$. One says that

(1) $(f_n)_n$ converges locally uniformly to f, if for all $x \in X$ there exists $x \in U \subseteq X$ open such that

$$\sup_{x \in U} d(f_n(x), f(x)) \stackrel{n \to \infty}{\longrightarrow} 0,$$

i.e., $(f_{n|U})_n$ converges uniformly to $f_{|U}$.

(2) $(f_n)_n$ converges compactly to f, if for every compact subspace K of X one has

$$\sup_{x \in K} d(f_n(x), f(x)) \stackrel{n \to \infty}{\longrightarrow} 0,$$

i.e., $(f_{n|K})_n$ converges uniformly to $f_{|K}$.

Remark 2.19. Notation as in Definition 2.18.

- (1) If $(f_n)_n$ converges locally uniformly to f, then $(f_n)_n$ converges compactly to f (every compact set K can be covered by finitely many U's as above).
- (2) Now assume that $X \subseteq \mathbb{R}^d$ open $(d \in \mathbb{N})$. If $(f_n)_n$ converges compactly to f, then $(f_n)_n$ converges locally uniformly to $f \ (\forall x \in X \exists x \in U \subseteq K \subseteq X \text{ with } U \subseteq X \text{ open and } K \text{ compact}).$

Assertion (2) holds more generally, if X is locally compact.

Upshot: For $X \subseteq \mathbb{R}^d$ open (or, more generally, for X locally compact) locally uniform convergence and compact convergence are equivalent.

Proposition 2.20. Let $S \subseteq V$ be a subspace, let $\gamma: [a, b] \to V$ be a piecewiese C^1 -path with $\{\gamma\} \subseteq S$. Let $(\omega_n)_{n \in \mathbb{N}}$ be a sequence of continuous 1-forms $\omega_n: S \to \operatorname{Hom}_{\mathbb{R}}(V, W)$ which converge locally uniformly to a 1-form $\omega: S \to \operatorname{Hom}_{\mathbb{R}}(V, W)$. Then ω is continuous, and

$$\lim_{n \to \infty} \int_{\gamma} \omega_n = \int_{\gamma} \omega.$$

Proof. By Analysis 2 we already know that ω is continuous. As $(\omega_n)_n$ converges locally uniformly and γ' is bounded, $(t \mapsto \omega_n(\gamma(t))\gamma'(t))_n$ converges locally uniformly and hence uniformly because [a, b] is compact. Hence the claim follows that the integral commutes with uniform limit of functions (Analysis 1).

(D) Digression: Connected and path-connected spaces

Definition 2.21. Let $X \neq \emptyset$ be a topological space.

- (1) X is called *connected* if for every open and closed $\emptyset \neq Z \subseteq X$ one has X = Z.
- (2) X is called *path-connected* if for all $x, y \in X$ there exists a continuous path $\gamma: [0,1] \to X$ with $\gamma(0) = x$ and $\gamma(1) = y$.

Warning: According to this definition the empty space is not connected.

Proposition 2.22.

(1) Every path-connected toplogical space is connected.

(2) Let V be finite-dimensional \mathbb{R} -vector space, $U \subseteq V$ be open and connected. Then for any $x, y \in U$ there exists a piecewise \mathcal{C}^{∞} -path $\gamma: [0,1] \to U$ with $\gamma(0) = x$ and $\gamma(1) = y$. (In particular: U is path-connected.)

Hence we see that if $U \subseteq V$ open, V finite-dimensional \mathbb{R} -vector space, then:

U connected $\Leftrightarrow U$ path-connected.

In general there exist connected topological spaces (even subspaces of \mathbb{R}^2) which are not path-connected.

Proof. This has been proved in Analysis 2.

Definition 2.23. An open (path-)connected subspace of a finite-dimensional \mathbb{R} -vector space is called *domain* (German: *Gebiet*).

Proposition 2.24. Let $\emptyset \neq X$ be a topological space. Then X is connected if and only if for every set M every locally constant map $t: X \to M$ is constant.

Proof. Let X be connected. Choose $x \in X$. If t is locally constant, then $t^{-1}(t(x))$ is open and closed in X and hence = X. Therefore t(y) = t(x) for all $y \in X$.

Conversely, assume that X is not connected. Then there exists $\emptyset \neq Y \subsetneq X$ open and closed. Hence the characteristic function of Y

$$\chi_Y \colon X \to \{0, 1\}, \qquad x \mapsto \begin{cases} 1, & x \in Y; \\ 0, & x \notin Y \end{cases}$$

is locally constant but not constant.

Remark 2.25. Let $f: X \to Y$ be a continuous surjective map of topological spaces. If X is (path-)connected, then Y is (path-)connected.

Proof. "X connected \Rightarrow Y connected": $\emptyset \neq Z \subseteq Y$ open and closed $\Rightarrow f^{-1}(Z)$ open and closed (because f is continuous) and $f^{-1}(Z) \neq \emptyset$ (because f is surjective). As X is connected, $f^{-1}(Z) = X$. Hence

$$Z \stackrel{f \text{ surjective}}{=} = f(f^{-1}(Z)) = f(X) = Y.$$

"X path-connected \Rightarrow Y path-connected": Let $y, y' \in Y$. f surjective $\Rightarrow \exists x, x' \in X$ with f(x) = y and f(x') = y'. Hence

X path-connected $\Rightarrow \exists \gamma \colon [0,1] \to X$ continuous with $\gamma(0) = x, \gamma(1) = x'$ $\Rightarrow f \circ \gamma \colon [0,1] \to Y$ continuous with $f(\gamma(0)) = y, f(\gamma(1)) = y'. \Box$

Remark and Definition 2.26. Let X be a topological space. Define on X the relation

 $x \sim y \Leftrightarrow \exists \gamma \colon [0,1] \to X$ path such that $\gamma(0) = x, \gamma(1) = y.$

This is an equivalence relation and the equivalence classes are called the *path components of* X (i.e., $x, y \in X$ are in the same path-component if and only if x and y can be connected by a path). The set of path components of X is denoted by $\pi_0(X)$. Every path-component is path-connected.

Proposition 2.27. Let V be finite-dimensional \mathbb{R} -vector space, let $X \subseteq V$ be open, and let $Z \subseteq X$ be a path-component. Then Z is open and closed in X.

For an arbitrary topological space X a path component of X is in general neither open nor closed.

Proof. As X is open in a finite-dimensional \mathbb{R} -vector space, every point $z \in Z$ has an open path-connected neighborhood U (e.g., some small open ball) in X. Hence $U \subseteq Z$. This shows that Z is open. Hence

$$X \setminus Z = \bigcup_{Z' \neq Z \text{ path-comp. of } X} Z'$$

is also open.

The same proof is valid for every topological space X such that for all $x \in X$ there exists an open path-connected neighborhood of X.

(E) Existence of primitives

The following result gives criteria for a 1-form ω to be exact, i.e. to answer the question, when a function F exists with $dF = \omega$ (a primitive (German: Stammfunktion) of ω).

Theorem 2.28. Let V be finite-dimensional \mathbb{R} -vector space, $W = \mathbb{R}^n$. Let $U \subseteq V$ be open, $\omega \colon U \to \operatorname{Hom}(V, W)$ a continuous 1-form. Then the following assertions are equivalent:

- (i) ω is exact.
- (ii) For all $x, y \in U$ we have: Given piecewise \mathcal{C}^1 -paths $\gamma_i \colon [a_i, b_i] \to U$, i = 1, 2 with $\gamma_1(a_1) = \gamma_2(a_2) = x$ and $\gamma_1(b_1) = \gamma_2(b_2) = y$. Then

$$\int_{\gamma_1} \omega = \int_{\gamma_2} \omega.$$

(iii) For every closed piecewise \mathcal{C}^1 -path $\gamma: [a, b] \to U$ one has

$$\int_{\gamma} \omega = 0.$$

Proof. Replacing U by its path-components, we may assume that U is a domain. Then the result has been proved in Analysis 2 for $W = \mathbb{R}$. The proof in the general case is the same.

Recall that for the essential step "(ii) \Rightarrow (i)" one obtains $F: U \to W$ as follows. Fix $x_0 \in U$ and define

$$F: U \to W, \qquad F(x) := \int_{x_0}^x \omega := \int_{\gamma} \omega,$$

where γ is any piecewise \mathcal{C}^1 -path with startpoint x_0 and endpoint x. This is well defined by (ii). One has $dF = \omega$ (!).

Note that "(i) \Rightarrow (ii)" is a direct consequence of Proposition 2.16.

3 Homotopy

(A) Homotopy and simply connected spaces

Notation: Let X be a topological space, $a, b \in \mathbb{R}$, a < b.

Definition 3.1. Let $\gamma_0, \gamma_1 \colon [a, b] \to X$ paths.

- (1) Assume that $\gamma_0(a) = \gamma_1(a)$ and $\gamma_0(b) = \gamma_1(b)$. A homotopy of γ_0 and γ_1 in X is a continuous map $H: [a, b] \times [0, 1] \to X$ such that
 - (a) $H(t,0) = \gamma_0(t)$ for all $t \in [a,b]$,
 - $H(t,1) = \gamma_1(t)$ for all $t \in [a,b]$.

(b) $H(a,s) = \gamma_0(a) = \gamma_1(a), H(b,s) = \gamma_0(b) = \gamma_1(b)$ for all $s \in [0,1]$.

Thus for all $s \in [0,1]$ the paths $\gamma_s: [a,b] \to X, t \mapsto H(t,s)$ have all the same endpoints as γ_0 and γ_1 .

If there exists a homotopy H of γ_0 and γ_1 in X, we call γ_0 and γ_1 homotopic. We then write $\gamma \simeq \delta$ or $H: \gamma \simeq \delta$.

- (2) Assume that γ_0 and γ_1 are loops (but not necessarily with same endpoints). A loop homotopy of γ_0 and γ_1 in X is a continuous map $H: [a, b] \times [0, 1] \to X$ such that
 - (a) $H(t,0) = \gamma_0(t)$ for all $t \in [a,b]$,
 - $H(t,1) = \gamma_1(t)$ for all $t \in [a,b]$.

(b) H(a, s) = H(b, s) for all $s \in [0, 1]$.

Thus for all $s \in [0,1]$ the paths $\gamma_s: [a,b] \to X, t \mapsto H(t,s)$ are loops (but the endpoints may change).

If there exists a loop homotopy H of γ_0 and γ_1 in X, we call γ_0 and γ_1 loop homotopic.

(3) A path $\gamma: [a, b] \to X$ is called *null-homotopic in* X if it is homotopic in X to a constant path ($\Rightarrow \gamma$ is a loop).

Example 3.2. Let $\gamma: [0, 2\pi] \to \mathbb{C}$, $\gamma(t) = e^{it}$. Then γ is a \mathcal{C}^{∞} -loop in \mathbb{C} . We will see that γ is null-homotopic in \mathbb{C} (Remark 3.9 will show that all loops in \mathbb{C} are null-homotopic in \mathbb{C}) but that γ is not null-homotopic in \mathbb{C}^{\times} (this will follow from Theorem 3.12 and Example 2.17 (2)). Note that this is graphically clear.

Remark 3.3. Let $\mathcal{C}([a,b],X)$ be the set of all paths $[a,b] \to X$. Then the relation "homotopic" \simeq is an equivalence relation on $\mathcal{C}([a,b],X)$.

The relation "loop homotopic" on the sets of all loops in X is an equivalence relation.

Proof. Let us show that \simeq is an equivalence relation (the proof for "loop homotopic" is the same). Reflexivity: Clear

Symmetry: *H* homotopy of γ and δ . Then

$$H^{-}: [a, b] \times [0, 1], \qquad H^{-}(t, s) := H(t, 1 - s)$$

is a homotopy of δ and γ .

Transitivity: Let $H': \gamma \simeq \delta, H'': \delta \simeq \varepsilon$. Then

$$H: [a,b] \times [0,1], \qquad H(t,s) := \begin{cases} H'(t,2s), & 0 \le s \le 1/2; \\ H''(t,2s-1), & 1/2 \le s \le 1. \end{cases}$$

is a homotopy of γ and ε .

Remark 3.4. Let $\gamma, \gamma_1, \gamma_2, \gamma_3, \delta_1, \delta_2 \colon [0, 1] \to X$ be paths in X. (1) Let $\varphi \colon [0, 1] \to [0, 1]$ be continuous with $\varphi(0) = 0$ and $\varphi(1) = 1$. Then $\gamma \simeq \gamma \circ \varphi$.

(2) Set $x_0 := \gamma(0), x_1 := \gamma(1)$. Then

$$\varepsilon_{x_0} \cdot \gamma \simeq \gamma \simeq \gamma \cdot \varepsilon_{x_1}.$$

- (3) $\gamma_1 \simeq \gamma_2 \Rightarrow \gamma_1^- \simeq \gamma_2^-.$
- (4) Assume $\gamma_i(1) = \delta_i(0)$ for i = 1, 2. Then $\gamma_1 \simeq \gamma_2, \, \delta_1 \simeq \delta_2 \Rightarrow \gamma_1 \cdot \delta_1 \simeq \gamma_2 \cdot \delta_2$.
- (5) $\gamma_1 \simeq \gamma_2 \Leftrightarrow \gamma_1 \cdot \gamma_2^-$ null-homotopic.
- (6) Assume $\gamma_1(1) = \gamma_2(0)$ and $\gamma_2(1) = \gamma_3(0)$. Then

$$\gamma_1 \cdot (\gamma_2 \cdot \gamma_3) \simeq (\gamma_1 \cdot \gamma_2) \cdot \gamma_3.$$

(7) Let γ and δ be loops, $x := \gamma(0)$, $y := \delta(0)$. Then γ and δ are loop homotopic if and only if there exists a path $\sigma : [0, 1] \to X$ with $\sigma(0) = x$ and $\sigma(1) = y$ such that γ and $\sigma \cdot \delta \cdot \sigma^{-}$ are homotopic.

Proof. Exercise

For (7): Let H be a loop homotopy of γ and δ and define a path $\sigma: [0,1] \to X$, $\sigma(s) := H(0,s) = H(1,s)$. Then $\sigma(0) = x$ and $\sigma(1) = y$. Define a homotopy of γ and $\sigma \cdot \delta \cdot \sigma^{-}$ by

$$H': [0,1] \times [0,1], \qquad H'(t,s) := \begin{cases} \sigma(3ts), & 0 \le t \le 1/3; \\ H(3t-1,s), & 1/3 \le t \le 2/3; \\ \sigma((3-3t)s), & 2/3 \le t \le 1. \end{cases}$$

Conversely, assume that there exists a path σ with $\sigma(0) = x$ and $\sigma(1) = y$ such that there exists a homotopy $H': \gamma \simeq \sigma \cdot \delta \cdot \sigma^-$. Then γ and $\sigma \cdot \delta \cdot \sigma^-$ are also loop homotopic. As the relation of being loop homotopic is transitive, it suffices to show that δ and $\sigma \cdot \delta \cdot \sigma^-$ are loop homotopic. Define a loop homotopy of δ and $\sigma \cdot \delta \cdot \sigma^-$ by

$$H: [0,1] \times [0,1], \qquad H(t,s) := \begin{cases} \sigma(1-s+3ts), & 0 \le t \le 1/3; \\ \delta(3t-1), & 1/3 \le t \le 2/3; \\ \sigma(1+(2-3t)s), & 2/3 \le t \le 1. \end{cases}$$

Example 3.5. Let $X = \mathbb{C}$, $\tilde{z} \in \mathbb{C}$, let $r \in \mathbb{R}^{>0}$. Recall that we defined

$$B_r(\tilde{z}) := \{ z \in \mathbb{C} ; |z - \tilde{z}| < r \}.$$

Let

$$\gamma_r^{\tilde{z}} \colon [0,1] \to \mathbb{C}, \qquad t \mapsto \tilde{z} + r \exp(2\pi i t).$$

This is a loop. Instead of $\gamma_r^{\tilde{z}}$ we also write $\partial B_r(\tilde{z})$. Let $z_0 \in B_r(\tilde{z}), \varepsilon > 0$. Then $\partial B_r(\tilde{z})$ and $\partial B_{\varepsilon}(z_0)$ are loop homotopic in $\mathbb{C} \setminus \{z_0\}$. *Proof.* As "loop homotopic" is an equivalence relation, we may assume that $\varepsilon > 0$ is small enough such that $B_{\varepsilon}(z_0) \subseteq B_r(\tilde{z})$.

For $z \in \partial B_r(\tilde{z})$ let $z_{\varepsilon} \in \partial B_{\varepsilon}(z_0)$ be the point of intersection of a line through z and z_0 with $\partial B_{\varepsilon}(z_0)$, i.e.,

$$z_{\varepsilon} := z_0 + \varepsilon \frac{z - z_0}{|z - z_0|}.$$

Define a loop homotopy of $\partial B_r(\tilde{z})$ and $\partial B_{\varepsilon}(z_0)$ by

$$H: [0,1] \times [0,1] \to \mathbb{C}, \qquad (t,s) \mapsto s\gamma_r^{\tilde{z}}(t)_{\varepsilon} + (1-s)\gamma_r^{\tilde{z}}(t).$$

Then $B_{\varepsilon}(z_0) \cap H([0,1] \times [0,1]) = \emptyset$. In particular, *H* is a loop homotopy in $\mathbb{C} \setminus \{z_0\}$. \Box

Definition and Remark 3.6. A topological space X is called *simply connected* if it is path-connected and if one the following equivalent conditions is satisfied.

- (i) Any two paths $\gamma, \delta \colon [a, b] \to X$ with the same startpoint and the same endpoint are homotopic to each other.
- (ii) Every loop in X is null-homotopic.
- (iii) Any two loops in X are loop homotopic.

Proof. "(i) \Leftrightarrow (ii)": Remark 3.4 (5). "(ii) \Leftrightarrow (iii)": Remark 3.4 (7).

Remark 3.7. Let X and Y be topological spaces, $f: X \to Y$ a homeomorphism. Then X is simply connected if and only if Y is simply connected.

Proof. Symmetry in X and $Y \Rightarrow$ It suffices to show: "X simply connected $\Rightarrow Y$ simply connected": Let $\delta : [a, b] \rightarrow Y$ be a closed path. Then $\gamma := f^{-1} \circ \delta : [a, b] \rightarrow X$ is a closed path and hence there exists a homotopy to the constant path $H : \gamma \simeq \varepsilon_{x_0}$, where $x_0 := \gamma(0) = \gamma(1)$. Then $f \circ H : \delta \simeq \varepsilon_{y_0}$, where $y_0 := \delta(0) = \delta(1)$.

Definition 3.8. Let V be an \mathbb{R} -vector space. A subset $S \subset V$ is called *star-shaped* (German: *sternförmig*), if there exists a point $x_0 \in V$ such that for all $x \in V$ one has

$$\{x_0 + t(x - x_0) ; 0 \le t \le 1\} \subseteq S.$$

(The left hand side is the line segment from x_0 to x.) Then x_0 is called a *star center* (German: *Sternzentrum*).

Remark 3.9. Let V be a finite-dimensional \mathbb{R} -vector space and let $\emptyset \neq X \subseteq V$ be a subspace. Then

 $X \text{ convex} \Rightarrow X \text{ star-shaped} \Rightarrow X \text{ simply connected} \Rightarrow X \text{ path-connected}.$

Proof. The first implication is clear: In a convex set every point is a star center. The last implication is by definition.

Let X be star-shaped with star center x. Let $\gamma: [a, b] \to X$ be a loop. Then

$$H\colon [a,b]\times [0,1]\to X, \qquad H(t,s):=x+s(\gamma(t)-x)$$

is loop homotopy of γ and ε_x in X.

Example 3.10.

- (1) Let V be finite-dimensional \mathbb{R} -vector space, $\|\cdot\|$ be a norm on $V, v_0 \in V, r \in \overline{\mathbb{R}}^{>0}$. Then $B_r(v_0) = \{ v \in V ; \|v - v_0\| < r \}$ is convex and hence simply connected. In particular: V is simply connected.
- (2) $\mathbb{C} \setminus \{x \in \mathbb{R} ; x \leq 0\}$ is star-shaped with star center 1 and hence simply connected.

(B) Homotopy invariance

Notation: In this subsection let $W = \mathbb{R}^n$, $U \subseteq V := \mathbb{R}^m$ be open and $\omega \colon U \to U$ $\operatorname{Hom}_{\mathbb{R}}(V, W)$ a continuously differentiable W-valued 1-form on U.

Lemma 3.11 (Poincaré lemma, local version). Let $U \subseteq \mathbb{R}^m$ be star-shaped, let $\omega: U \to \operatorname{Hom}_{\mathbb{R}}(V, W)$ be closed. Then ω is exact.

Proof. After a possible translation, we may assume that the star center is $0 \in \mathbb{R}^m$ (to simplify the notation). Let $\omega = \sum_{i=1}^{m} f_i dx^i$ with $f_i: U \to W$ a \mathcal{C}^1 -map. Define

$$F: U \to W, \qquad F(x) := \int_0^1 \left(\sum_{i=1}^m f_i(tx)x_i\right) dt, \qquad x = (x_1, \dots, x_m) \in U$$

This is well-defined because $\{tx ; 0 \le t \le 1\} \subseteq U$ for all $x \in U$. We claim that $dF = \omega$. We have to show that $\frac{\partial F}{\partial x_j} = f_j$ for $j = 1, \ldots, m$. As the map $(t,x)\mapsto \sum_{i=1}^m f_i(tx)x_i$ is \mathcal{C}^1 , we may interchange integral and derivative. Hence:

$$\begin{split} \frac{\partial F}{\partial x_j}(x) &= \int_0^1 \left(\sum_{i=1}^m \frac{\partial}{\partial x_j} (f_i(tx)x_i) \right) \, dt \\ &= \int_0^1 (f_j(tx) + t \left(\sum_{i=1}^m x_i \frac{\partial f_i}{\partial x_j}(tx) \right)) \, dt \\ &\stackrel{\omega \text{ closed }}{=} \int_0^1 f_j(tx) \, dt + \int_0^1 t \left(\sum_{i=1}^m x_i \frac{\partial f_j}{\partial x_i}(tx) \right) \, dt \\ &\stackrel{(*)}{=} \int_0^1 f_j(tx) \, dt + t f_j(tx) \left|_0^1 - \int_0^1 f_j(tx) \, dt \right. \\ &= f_j(x), \end{split}$$

where (*) holds by partial integration because

$$\frac{\partial}{\partial t}(f_j(tx)) \stackrel{\text{chain rule}}{=} \left(\frac{\partial f_j}{\partial x_1}(tx), \dots, \frac{\partial f_j}{\partial x_m}(tx)\right) \begin{pmatrix} x_1\\ \vdots\\ x_m \end{pmatrix} = \sum_{i=1}^m x_i \frac{\partial f_j}{\partial x_i}(tx). \qquad \Box$$

Theorem 3.12 (Homotopy invariance). Let ω be closed. Let $\gamma, \delta \colon [0,1] \to U$ be piecewise C^1 -loops that are loop-homotopic. Then

$$\int\limits_{\gamma}\omega=\int\limits_{\delta}\omega$$

In the proof we will use the followint notation. For $x, y \in V$ let $\overline{x, y}$ be the path $[0,1] \to V, t \mapsto x + t(y-x)$ (the line segment from x to y). More generally set for $x_1, \ldots, x_r \in V$

$$\overline{x_1,\ldots,x_r} := \overline{x_1,x_2} \cdot \ldots \cdot \overline{x_{r-1},x_r}.$$

Such paths are called *piecewise affine linear*.

Proof. Choose a norm $\|\cdot\|$ on V. Let $H: [0,1] \times [0,1] \to U$ be a loop homotopy from γ to δ . (i). As $H([0,1] \times [0,1])$ is compact, there exists $\varepsilon > 0$ such that

$$\|H(s,t)-y\|\geq \varepsilon \qquad \forall \, (t,s)\in [a,b]\times [0,1], y\in V\setminus U.$$

(ii). As $[0,1] \times [0,1]$ is compact, H is uniformly continuous. Hence there exists $\delta > 0$ such that

(*)
$$|t - t'| < \delta, |s - s'| < \delta \quad \Rightarrow \quad ||H(t, s) - H(t', s')|| < \frac{\varepsilon}{2}.$$

Choose $0 = t_0 < t_1 < \cdots < t_m = 1$ and $0 = s_0 < s_1 < \cdots < s_l = 1$ with $|t_j - t_{j-1}| < \delta$ for all j and $|s_k - s_{k-1}| < \delta$ for all k. Set $A_{j,k} := H(t_j, s_k) \iff A_{0,k} = A_{m,k}$ for all k) and define piecewise \mathcal{C}^1 -loops

$$\gamma_k := \overline{A_{0,k}, A_{1,k}, \dots, A_{m,k}}.$$

for $0 \le k \le l$. (*iii*). For all $1 \le j \le m$, $0 \le k \le l$ define piecewise \mathcal{C}^1 -loops

$$\sigma_{j,k} := \overline{A_{j-1,k-1}, A_{j-1,k}, A_{j,k}, A_{j,k-1}, A_{j-1,k-1}}.$$

The image of $\sigma_{j,k}$ is contained in $B_{\varepsilon}(A_{j-1,k-1})$ by (*), and $B_{\varepsilon}(A_{j-1,k-1})$ is a convex set which is contained in U by (i). Therefore the Lemma of Poincaré (Lemma 3.11) implies that $\int_{\sigma_{j,k}} \omega = 0$. Therefore the integral of ω over the following paths are equal

$$\sigma_{1,k} \cdot \overline{A_{0,k-1}, A_{1,k-1}} \cdot \frac{\gamma_{k-1}}{\sigma_{2,k} \cdot \overline{A_{1,k-1}, A_{2,k-1}} \cdot \dots \cdot \sigma_{m,k} \cdot \overline{A_{m-1,k-1}, A_{m,k-1}},}_{\overline{A_{0,k-1}, A_{0,k}} \cdot \gamma_k \cdot \overline{A_{m,k}, A_{m,k-1}},}_{\gamma_k}$$

Therefore we obtain $\int_{\gamma_0} \omega = \int_{\gamma_l} \omega$. (*iv*). In the same way as in (iii) one can prove that $\int_{\gamma} \omega = \int_{\gamma_0} \omega$ and $\int_{\delta} \omega = \int_{\gamma_l} \omega$. \Box **Theorem 3.13 (Poincaré lemma, global version).** Let $U \subseteq \mathbb{R}^m$ be open simply connected. Let $\omega: U \to \operatorname{Hom}_{\mathbb{R}}(V, W)$ be a continuously differentiable W-valued 1-form on U. Then

$$\omega$$
 closed $\Leftrightarrow \omega$ exact.

Proof. By Theorem 2.28 it suffices to show that for any piecewise \mathcal{C}^1 -loops γ one has

(*)
$$\int_{\gamma} \omega = 0.$$

But as U is simply connected, γ is null-homotopic, i.e., $\gamma \simeq \varepsilon_x$, where $x = \gamma(0)$. Hence Theorem 3.12 shows

$$\int_{\gamma} \omega = \int_{\varepsilon_x} \omega = 0.$$

Corollary 3.14. Let $\omega: U \to \operatorname{Hom}(V, W)$ be closed. Let $\gamma, \delta: [a, b] \to U$ be homotopic piecewise \mathcal{C}^1 -paths in U. Then

$$\int_{\gamma} \omega = \int_{\delta} \omega.$$

Proof. $\gamma \simeq \delta \Rightarrow \gamma \cdot \delta^{-}$ null-homotopic. Hence:

$$\int_{\gamma} \omega - \int_{\delta} \omega = \int_{\gamma \cdot \delta^{-}} \omega \stackrel{3.12}{=} 0.$$

Remark and Definition 3.15. The proof of Theorem 3.12 shows that every path γ (not necessarily piecewise \mathcal{C}^1) in U is homotopic in U to a piecewise affine linear path $\tilde{\gamma}$ (which is in particular piecewise \mathcal{C}^1).³ This allows us to define for every path $\gamma: [a, b] \to U$ and for every closed 1-form ω on U:

$$\int_{\gamma} \omega := \int_{\tilde{\gamma}} \omega.$$

This is independent of the choice of $\tilde{\gamma}$ by Corollary 3.14.

$$\gamma_1 \cdots \gamma_i \cdot \sigma_i \simeq \sigma_0 \cdot \overline{x_0, x_1} \cdots \overline{x_{i-1}, x_i}$$

for all $i = 1, \ldots, k$ and in particular

$$\gamma \simeq \gamma_1 \cdots \gamma_k \cdot \varepsilon_{x_k} \simeq \varepsilon_{x_0} \cdot \overline{x_0, x_1} \cdots \overline{x_{k-1}, x_k}.$$

³Indeed, the proof shows that for every path γ there exists a piecewise affine linear path $\overline{x_0, \ldots, x_k}$ with $x_0 = \gamma(0)$ and $x_k = \gamma(1)$ such that γ can be written as $\gamma_1 \cdots \gamma_k$ (up to reparametrization which we may do because Remark 3.4 (1) shows that a reparametrized way is homotopic to the original one) and such that for all $i = 1, \ldots, k$ the images of $\overline{x_{i-1}, x_i}$ and γ_i are contained in a convex open subset B_i which is contained in U (in fact, we may even assume that $x_i = \gamma_i(1)$ but we don't need this in the sequel). Let $\sigma_0 := \varepsilon_{x_0}$ and $\sigma_i := \overline{\gamma_i(1), x_i}$ for $i = 1, \ldots, k$. Then $\sigma_k = \varepsilon_{x_k}$. The paths $\gamma_i \cdot \sigma_i$ and $\sigma_{i-1} \cdot \overline{x_{i-1}, x_i}$ are then contained in B_i and hence are homotopic. Hence induction shows that

(C) The fundamental group

Definition 3.16. Let X be a topological space, $x \in X$. Define

$$\pi_1(X, x) := \{ \gamma \colon [0, 1] \to X ; \gamma \text{ path with } \gamma(0) = \gamma(1) = x \} / \simeq,$$

i.e., $\pi_1(X, x)$ is the set of homotopy classes $[\gamma]$ of closed paths γ starting (and ending) in x. Define a multiplication on $\pi_1(X, x)$ by

$$[\gamma][\delta] := [\gamma \cdot \delta].$$

By Remark 3.4 this is well-defined and yields a group structure on $\pi_1(X, x)$. The neutral element is $[\varepsilon_x]$ and the inverse of $[\gamma] \in \pi_1(X, x)$ is $[\gamma^-]$. In the sequel we simply write γ instead of $[\gamma]$ for elements in $\pi_1(X, x)$.

Remark 3.17. Let X be a path-connected topological space, $x, y \in X$. Choose a path σ from x to y. Then

$$\varphi \colon \pi_1(X, x) \to \pi_1(X, y), \qquad \gamma \mapsto \sigma^- \cdot \gamma \cdot \sigma$$

is an isomorphism of groups: Remark 3.4 shows that φ is well defined and that for $\gamma, \gamma' \in \pi_1(X, x)$ one has

$$\varphi(\gamma)\varphi(\gamma') = \sigma^- \cdot \gamma \cdot \sigma \cdot \sigma^- \cdot \gamma' \cdot \sigma \simeq \sigma^- \cdot \gamma \cdot \varepsilon_x \cdot \gamma' \cdot \sigma \simeq \sigma^- \cdot \gamma \cdot \gamma' \cdot \sigma = \varphi(\gamma\gamma').$$

Hence φ is a group homomorphism. An inverse is given by $\delta \mapsto \sigma \cdot \delta \cdot \sigma^-$.

Example 3.18. A path-connected topological space X is simply connected if and only if $\pi_1(X, x) = 1$ for all (equivalently, for one) $x \in X$.

Example 3.19. For $n \in \mathbb{Z}$ let $\gamma_n \colon [0,1] \to \mathbb{C}^{\times}$, $\gamma_n(t) = \exp(2\pi i n t)$. We will see in Section 8 that

$$\mathbb{Z} \to \pi_1(\mathbb{C}^{\times}, 1), \qquad n \mapsto \gamma_n$$

is an isomorphism of groups.

In general, $\pi_1(X, x)$ is not an abelian group (e.g., if $X = \mathbb{R}^2 \setminus \{P, Q\}$ for $P \neq Q$ points in \mathbb{R}^2).

4 Holomorphic 1-forms

(A) Complex path integrals

We now consider \mathbb{C} -valued 1-forms on open subsets U of the 2-dimensional \mathbb{R} -vector space \mathbb{C} . As usual we denote the coordinate function Re: $\mathbb{C} \to \mathbb{R}$ by x and Im: $\mathbb{C} \to \mathbb{R}$ by y. Thus every \mathbb{C} -valued 1-form on U is of the form

$$\omega = f_x dx + f_y dy$$

for functions $f_x, f_y \colon U \to \mathbb{C}$.

Notation: Let $U \subseteq \mathbb{C}$ open, $f: U \to \mathbb{C}$ a map.

Remark and Definition 4.1. Let $f: U \to \mathbb{C}$ be continuously real differentiable. Recall that

(*)
$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy$$

For instance let $z \colon U \to \mathbb{C}, x + iy \mapsto x + iy$ and $\overline{z} \colon U \to \mathbb{C}, x + iy \mapsto x - iy$. Then

$$dz = dx + idy, \qquad d\bar{z} = dx - idy.$$

Hence we can rewrite (*) as follows.

(**)
$$df = \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right) dz + \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right) d\bar{z}.$$

If we define the Wirtinger derivatives

$$\frac{\partial f}{\partial z} := \frac{1}{2} \left(\frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right) : U \to \mathbb{C}, \qquad \frac{\partial f}{\partial \bar{z}} := \frac{1}{2} \left(\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right) : U \to \mathbb{C},$$

then $(^{**})$ can be written

$$df = \frac{\partial f}{\partial z}dz + \frac{\partial f}{\partial \bar{z}}d\bar{z}$$

Proposition 4.2. Let $f: U \to \mathbb{C}$ be continuously real differentiable. The following assertions are equivalent.

~ "

(i) f is holomorphic. (ii) $\frac{\partial f}{\partial \overline{z}} = 0.$ (iii) The 1-form fdz is closed.

In this case one has for the complex derivative

(4.2.1)
$$f' = \frac{\partial f}{\partial z},$$

and hence df = f'dz.

A similar statement holds also for holomorphic maps $f: U \subseteq \mathbb{C}^m \to \mathbb{C}^n$.

Proof. "(i) \Leftrightarrow (ii)": We have $\frac{\partial f}{\partial x} = \frac{\operatorname{Re}(f) + i\operatorname{Im}(f)}{\partial x}$ and similar for $\frac{\partial f}{\partial y}$. Hence:

$$\begin{aligned} \frac{\partial f}{\partial \bar{z}} &= 0 \Leftrightarrow \frac{\partial f}{\partial x} = -i \frac{\partial f}{\partial y} \\ &\Leftrightarrow \frac{\partial \operatorname{Re}(f)}{\partial x} = \frac{\partial \operatorname{Im}(f)}{\partial y} \quad \text{and} \quad \frac{\partial \operatorname{Im}(f)}{\partial x} = -\frac{\partial \operatorname{Re}(f)}{\partial y} \\ &\stackrel{(1.12.1)}{\Leftrightarrow} f \text{ holomorphic.} \end{aligned}$$

"(ii) \Leftrightarrow (iii)": We have:

$$\begin{aligned} fdz &= fdx + ifdy \text{ closed} \Leftrightarrow \frac{\partial f}{\partial y} = i\frac{\partial f}{\partial x} \\ \Leftrightarrow \frac{\partial f}{\partial \bar{z}} = 0. \end{aligned}$$

Finally (4.2.1) follows from (1.12.3) and (1.12.1).

Definition and Remark 4.3. Let $f: U \to \mathbb{C}$ be holomorphic. A holomorphic primitive of f (German: holomorphe Stammfunktion von f) is a holomorphic function $F: U \to \mathbb{C}$ such that F' = f.

If $G: U \to \mathbb{C}$ is a second primitive of f, then $F - G: U \to \mathbb{C}$ is locally constant (Proposition 1.15).

Remark 4.4. Let $f: U \to \mathbb{C}$ be holomorphic. Then fdz is exact if and only if there exists a holomorphic primitive F of f (Proposition 4.2). In this case one has dF = fdz (4.2.1).

Remark 4.5. Let $\gamma : [a, b] \to \mathbb{C}$ be a \mathcal{C}^1 -path $(a, b \in \mathbb{R}, a < b)$ and let $f : \{\gamma\} \to \mathbb{C}$ be continuous. Then

$$\int_{\gamma} f \, dz \stackrel{2.11}{=} \int_{a}^{b} f(\gamma(t)) \operatorname{Re}(\gamma)'(t) + i f(\gamma(t)) \operatorname{Im}(\gamma)'(t) \, dt$$
$$= \int_{a}^{b} f(\gamma(t)) \gamma'(t) \, dt.$$

Example 4.6. Let $z_0 \in \mathbb{C}$, let $r \in \mathbb{R}^{>0}$, $n \in \mathbb{Z}$. Let $\gamma_n: [0,1] \to \mathbb{C}$, $\gamma_n(t) := z_0 + r \exp(2\pi i n t)$. Then we have

$$\int_{\gamma_n} \frac{1}{z - z_0} \, dz = \int_0^1 \frac{1}{r \exp(2\pi i n t)} 2\pi i n r \exp(2\pi i n t) \, dt = 2\pi i n.$$

In particular:

(4.6.1)
$$\int_{\partial B_r(z_0)} \frac{1}{z - z_0} dz = 2\pi i$$

Remark 4.7. Let $f: U \to \mathbb{C}$ be holomorphic. As fdz is a closed 1-form we can use Remark 3.15 to define

$$\int_{\gamma} f \, dz$$

for every path $\gamma \colon [a, b] \to U$ (not necessarily piecewise \mathcal{C}^1).

Definition and Remark 4.8. Let $\gamma: [a, b] \to U$ be a piecewise \mathcal{C}^1 -path $(a, b \in \mathbb{R}, a < b)$. Then

$$L(\gamma) := \int_{a}^{b} |\gamma'(t)| dt$$

is called the *length* of γ .

Let $f: \{\gamma\} \to \mathbb{C}$ be continuous. Set

$$\|f\|_{\gamma} := \sup_{t \in [a,b]} |f(\gamma(t))| = \sup_{z \in \{\gamma\}} |f(z)|$$

Then

(4.8.1)
$$\left| \int_{\gamma} f \, dz \right| = \left| \int_{a}^{b} f(\gamma(t))\gamma'(t) \, dt \right|$$
$$\leq \int_{a}^{b} |f(\gamma(t))| |\gamma'(t)| \, dt$$
$$\leq \|f\|_{\gamma} L(\gamma).$$

Remark 4.9. Assume that a holomorphic function $f: U \to \mathbb{C}$ has a primitive F, $\gamma: [a, b] \to U$ a path. Then (Proposition 2.16, Remark 3.15):

$$\int_{\gamma} f \, dz = F(\gamma(b)) - F(\gamma(a)).$$

Proposition 4.10. Let $U \subseteq \mathbb{C}$ be open, let $\gamma : [a, b] \to U$ be a path, and let $f : U \times \{\gamma\} \to \mathbb{C}$ be continuous. Moreover assume that for $z \in \{\gamma\}$ the function $U \to \mathbb{C}$, $w \mapsto f(w, z)$ is holomorphic with derivative $\frac{\partial f}{\partial w}$. Then

$$F: U \to \mathbb{C}, \qquad F(w) := \int_{\gamma} f(w, z) \, dz$$

is holomorphic with

$$F'(w) = \int\limits_{\gamma} \frac{\partial f}{\partial w}(w, z) \, dz$$

Proof. This follows from (4.2.1) because an analogous assertion has been shown in Analysis 2 for partial derivatives.

(B) Cauchy's theorem and Cauchy integral formula

Theorem 4.11 (Cauchy's Theorem). Let $f: U \to \mathbb{C}$ be holomorphic.

(1) Let $\gamma, \delta: [a, b] \to U$ be paths. Assume that γ and δ are homotopic or that γ and δ are loops which are loop-homotopic. Then

$$\int_{\gamma} f \, dz = \int_{\delta} f \, dz.$$

(2) f has a primitive if and only if

(*)
$$\int_{\gamma} f \, dz = 0 \qquad \text{for every loop } \gamma \text{ in } U.$$

(3) Let U be simply connected. Then f has a primitive.

Proof. Proposition $4.2 \Rightarrow f dz$ is closed. Hence Theorem 3.12 and Corollary 3.14 imply (1). The equivalence in (2) follows from Theorem 2.28. If U is simply connected, Corollary 3.13 implies that f dz is exact, i.e., f has a primitive (Remark 4.4).

Remark 4.12. Let $G \subseteq \mathbb{C}$ be a domain. If $f: G \to \mathbb{C}$ is a holomorphic function that has a primitive (which is always the case, if G is simply connected), then such a primitive F of f can be constructed as follows. Fix $w_0 \in G$ and set

$$F: U \to \mathbb{C}, \qquad F(w) := \int_{w_0}^w f \, dz$$

where $\int_{w_0}^{w}$ denotes the path integral over some path with startpoint w_0 and endpoint w. This follows from the proof of Theorem 2.28.

Remark 4.13.

- (1) In general there exist holomorphic functions which do not have a primitive. For instance $f: \mathbb{C}^{\times} \to \mathbb{C}$, f(z) = 1/z has no primitive by (4.6.1). But it has a primitive on every open simply connected subspace of \mathbb{C}^{\times} (see the definition of logarithms in Section 6).
- (2) Cauchy's theorem shows in particular that the restriction of f to small discs always has a primitive. Hence primitives of f always exist locally.
- (3) Even if U is not simply connected, then there exist holomorphic functions $f: U \to \mathbb{C}$ that have a primitive (e.g., $f: \mathbb{C}^{\times} \to \mathbb{C}, z \mapsto z^n$ has for $-1 \neq n \in \mathbb{Z}$ the primitive $z \mapsto \frac{1}{n+1} z^{n+1}$).

Theorem 4.14 (Cauchy integral formula, local version). Let $U \subseteq \mathbb{C}$ be open, $\tilde{z} \in U$ and r > 0 such that $\overline{B_r(\tilde{z})} \subseteq U$. Let $f: U \to \mathbb{C}$ be holomorphic. Then for every $z_0 \in B_r(\tilde{z})$ we have

$$f(z_0) = \frac{1}{2\pi i} \int\limits_{\partial B_r(\tilde{z})} \frac{f(z)}{z - z_0} dz$$

Proof. Let $\varepsilon > 0$ with $B_{\varepsilon}(z_0) \subseteq B_r(\tilde{z})$. By Example 3.5, $\partial B_{\varepsilon}(z_0)$ and $\partial B_r(\tilde{z})$ are loop homotopic in $\mathbb{C} \setminus \{z_0\}$. Hence we obtain

$$\int_{\partial B_r(\bar{z})} \frac{f(z)}{z - z_0} dz - 2\pi i f(z_0)$$

$$\stackrel{4.6,4.11}{=} \int_{\partial B_{\varepsilon}(z_0)} \frac{f(z)}{z - z_0} dz - f(z_0) \int_{\partial B_{\varepsilon}(z_0)} \frac{1}{z - z_0} dz$$

$$= \int_{\partial B_{\varepsilon}(z_0)} \frac{f(z) - f(z_0)}{z - z_0} dz$$

$$\stackrel{\varepsilon \to 0}{\to} 0,$$

where the last line holds because $|\frac{f(z)-f(z_0)}{z-z_0}|$ is bounded in a neighborhood of z_0 (f is holomorphic in z_0) and $L(\partial B_{\varepsilon}(z_0)) = 2\pi\varepsilon \to 0$ for $\varepsilon \to 0$.

5 Properties of holomorphic functions I

Notation: U is always an open subspace of \mathbb{C} .

(A) Analytic functions

Remark and Definition 5.1. Let $z_0 \in \mathbb{C}$. Recall that a complex power series in z_0 is a series of the form

$$(*) \qquad \qquad \sum_{n=0}^{\infty} a_n (z-z_0)^n$$

with $z \in \mathbb{C}$ and $a_n \in \mathbb{C}$ for all $n \in \mathbb{N}_0$. We usually consider (*) as sequence of functions $(f_N)_{N \in \mathbb{N}_0}$ where

$$f_N \colon \mathbb{C} \to \mathbb{C}, \qquad z \mapsto \sum_{n=0}^N a_n (z - z_0)^n.$$

Then

(5.1.1)
$$\rho := \frac{1}{\limsup_n |a_n|^{1/n}} \in \overline{\mathbb{R}}^{\ge 0}.$$

is called the *radius of convergence of* (*). We have:

- (1) For $z \in \mathbb{C}$ with $|z z_0| > \rho$ the power series (*) does not converge.
- (2) The power series (*) converges absolutely and locally uniformly on $B_{\rho}(z_0)$ (more precisely: the series (*) converges absolutely for all $z \in B_{\rho}(z_0)$, and the sequence $(f_N)_{N \in \mathbb{N}_0}$ converges locally uniformly on $B_{\rho}(z_0)$).

The power series (*) is called *convergent*, if $\rho > 0$.

Definition 5.2. Let $f: U \to \mathbb{C}$ be a map.

- (1) Let $z_0 \in U$. Then f is called *analytic in* z_0 , if there exists a convergent power series $\sum_{n=0}^{\infty} a_n (z z_0)^n$ such that $f(z) = \sum_{n=0}^{\infty} a_n (z z_0)^n$ for all z in a neighborhood of z_0 .
- (2) f is called *analytic* if f is analytic in z_0 for all $z_0 \in U$.

Proposition 5.3. Let $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$ be a power series, $\rho > 0$ its radius of convergence. Then f is an analytic function on $B_{\rho}(z_0)$.

Proof. See Analysis 1.

Remark 5.4. If f is analytic on an open subset U, it does not mean that there exists a power series $\sum_{n} a_n (z - z_0)^n$ such that $f(z) = \sum_{n} a_n (z - z_0)^n$ for all $z \in U$. The function f can only locally expressed as a power series.

For instance, consider $f: \mathbb{C}^{\times} \to \mathbb{C}$, f(z) := 1/z. If there existed a power series $\sum_{n} a_n(z-z_0)^n$ such that $f(z) = \sum_{n} a_n(z-z_0)^n$ for all $z \in \mathbb{C}^{\times}$, then this power series would have to converge on a circle *B* whose closure contains \mathbb{C}^{\times} . Hence *B* would be \mathbb{C} . But then *f* could be extended continuously (even analytically) to the function $\tilde{f}: \mathbb{C} \to \mathbb{C}, \ \tilde{f}(z) = \sum_{n} a_n(z-z_0)^n$, which is not possible because $\lim_{z\to 0} f(z)$ does not exist in \mathbb{C} .

Verbatim as in Analysis 1 one shows the following proposition.

Proposition 5.5. Let $f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$ be a power series, ρ its radius of convergence.

- (1) The power series $\sum_{n=0}^{\infty} na_n(z-z_0)^{n-1}$ has also ρ as radius of convergence. (2) The function $f: B_{\rho}(z_0) \to \mathbb{C}$ is infinitely often complex differentiable (in particular holomorphic) and

$$f'(z) = \sum_{n=1}^{\infty} na_n (z - z_0)^{n-1}$$

for $z \in B_{\rho}(z_0)$. (3)

$$a_n = \frac{f^{(n)}(z_0)}{n!}.$$

Example 5.6. (1) The power series $\exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$ has radius of convergent ∞ . Hence

$$\exp\colon \mathbb{C} \to \mathbb{C}$$

is a holomorphic function, called the *exponentional function*. We have

$$\exp'(z) \stackrel{5.5}{=} \sum_{n=1}^{\infty} \underbrace{\frac{n}{n!}}_{=\frac{1}{(n-1)!}} z^{n-1} = \sum_{n=0}^{\infty} \frac{1}{n!} z^n = \exp(z).$$

(2) The power series

$$\cos(z) := \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} z^{2n},$$
$$\sin(z) := \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} z^{2n+1}$$

have radius of convergence ∞ and therefore define holomorphic functions $\cos \colon \mathbb{C} \to$ \mathbb{C} and sin: $\mathbb{C} \to \mathbb{C}$. One has

$$\sin'(z) = \cos(z)$$
 and $\cos'(z) = -\sin(z)$

for all $z \in \mathbb{C}$.

Holomorphic functions are analytic **(B)**

Lemma 5.7. Let $\gamma: [a, b] \to \mathbb{C}$ be a path, let $g: \{\gamma\} \to \mathbb{C}$ be continuous. Assume one of the following hyoptheses.

- (a) The path γ is piecewise \mathcal{C}^1 .
- (b) There exists an open neighborhood W of $\{\gamma\}$ and a holomorphic function $\tilde{g} \colon W \to \mathbb{C}$ such that $\tilde{g}_{|\{\gamma\}} = g$.

Define

$$f \colon \mathbb{C} \setminus \{\gamma\} \to \mathbb{C}, \qquad f(w) := \int_{\gamma} \frac{g(z)}{z - w} \, dz.$$

For $z_0 \in \mathbb{C} \setminus \{\gamma\}$ we set $\rho := \text{dist}(z_0, \{\gamma\}) := \inf_{z \in \{\gamma\}} d(z, z_0)$. Then the function $f_{|B_{\rho}(z_0)}$ has a power series expansion in z_0 with

(5.7.1)
$$f^{(n)}(z_0) = n! \int_{\gamma} \frac{g(z)}{(z - z_0)^{n+1}} dz.$$

Proof. As $\{\gamma\}$ is compact, we have $\rho > 0$.

We claim that for all $0 < r < \rho$ the restriction $f_{|B_r(z_0)}$ has a power series expansion in z_0 (then the claim shows that the power series expansion has radius of convergence $\geq r$ for all $r < \rho$ and hence it radius of convergence is $\geq \rho$).

Under the assumption (b) we may replace γ by a piecewise C^1 -path that is homotopic to γ in $W \setminus B_r(z_0)$. This does not change $f_{|B_r(z_0)}$ by Cauchy's theorem 4.11. Thus we may assume that γ is piecewise C^1 , i.e. we are in case (a).

For $z \in \{\gamma\}$ and $w \in B_r(z_0)$ we have $|w - z_0| < |z - z_0|$. Hence we may write

$$\frac{1}{z-w} = \frac{1}{z-z_0} \frac{1}{1-\frac{w-z_0}{z-z_0}}$$
$$= \frac{1}{z-z_0} \sum_{n=0}^{\infty} \left(\frac{w-z_0}{z-z_0}\right)^n$$
$$= \sum_{n=0}^{\infty} \frac{(w-z_0)^n}{(z-z_0)^{n+1}}$$

and the series converges locally uniformly as a function in z. Moreover, g is bounded on $\{\gamma\}$ and therefore $\sum_{n=0}^{\infty} g(z) \frac{(w-z_0)^n}{(z-z_0)^{n+1}}$ converges also locally uniformly. Hence we obtain

$$f(w) = \int_{\gamma} \sum_{n=0}^{\infty} g(z) \frac{(w-z_0)^n}{(z-z_0)^{n+1}} dz$$

=
$$\sum_{n=0}^{\infty} \underbrace{\left(\int_{\gamma} \frac{g(z)}{(z-z_0)^{n+1}} dz\right)}_{=:a_n} (w-z_0)^n$$

and f has a power series expansion in z_0 . By Proposition 5.5 we then know that

$$f^{(n)}(z_0) = n! a_n.$$

Theorem 5.8. let $f: U \to \mathbb{C}$ be holomorphic, $z_0 \in U$, and let $R \in \mathbb{R}^{>0}$ such that $\overline{B_R(z_0)} \subseteq U$. Then $f_{|B_R(z_0)}$ has a power series expansion

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

such that for all $n \in \mathbb{N}_0$ one has

(5.8.1)
$$a_n = \frac{f^{(n)}(z_0)}{n!} = \frac{1}{2\pi i} \int\limits_{\partial B_r(\tilde{z})} \frac{f(z)}{(z-z_0)^{n+1}} dz,$$

where $B_r(\tilde{z})$ is any disc such that $z_0 \in B_r(\tilde{z})$ and $\overline{B_r(\tilde{z})} \subseteq U$. Furthermore one has

(5.8.2)
$$|a_n| \le \frac{\|f\|_{\partial B_r(\tilde{z})}}{r^n}.$$

Proof. By the Cauchy Integral formula (Theorem 4.14) one has

$$f(w) = \frac{1}{2\pi i} \int_{\partial B_r(\tilde{z})} \frac{f(z)}{z - w} dz$$

for all $w \in B_r(\tilde{z})$. Choosing r = R and $\tilde{z} = z_0$ and applying Lemma 5.7 to $\gamma = \partial B_R(z_0)$ shows that f has a power series expansion in z_0 on $B_R(z_0)$. Applying (5.7.1) to $\gamma = \partial B_r(\tilde{z})$ we obtain (5.8.1).

It remains to show (5.8.2): Let $\gamma := \partial B_r(\tilde{z})$. Then

$$|a_n| \le \frac{1}{2\pi} \left\| \frac{f(z)}{(z-\tilde{z})^{n+1}} \right\|_{\gamma} L(\gamma) = \frac{1}{2\pi} \|f(z)\|_{\gamma} \frac{1}{r^{n+1}} r 2\pi = \frac{\|f\|_{\gamma}}{r^n}.$$

Corollary 5.9. $U \subseteq \mathbb{C}$ open, $f: U \to \mathbb{C}$ function. Then the following assertions are equivalent:

- (i) f is holomorphic.
- (ii) f is infinitely often complex differentiable and all higher derivatives $f^{(n)}$ are holomorphic.
- (iii) f is analytic.

Proof. "(iii) \Rightarrow (ii)": Proposition 5.5. "(ii) \Rightarrow (i)": Clear. "(i) \Rightarrow (iii)": Theorem 5.8

Corollary 5.10. Let $f: U \to \mathbb{C}$ be holomorphic, $z_0 \in U$, $\sum_n a_n(z-z_0)^n$ its power series expansion in z_0 , and let ρ be its radius of convergence. Then

$$\rho = \sup\{ r \in \mathbb{R}^{>0} ; \exists holomorphic function \ \tilde{f} : U \cup B_r(z_0) with \ \tilde{f}_{|U} = f \}.$$

Proof. Let ρ' be the right hand side. As a power series is holomorphic within its open disc of convergense, an extension \tilde{f} of f to $U \cup B_{\rho}(z_0)$ exists. Hence $\rho \leq \rho'$.

Conversely, let us show that $\rho \geq \rho'$. For all $0 < R < \rho'$ we apply (5.8.2) to $\tilde{f}: U \cup B_{\rho'}(z_0) \to \mathbb{C}$. As f and \tilde{f} are equal in a neighborhood of z_0 , we have $f^{(n)}(z_0) = \tilde{f}^{(n)}(z_0)$. Hence f and \tilde{f} have the same power series expansion $\sum_{n=0}^{\infty} a_n(z-z_0)^n$ in z_0 . Set $C := \|\tilde{f}\|_{\partial B_R(z_0)}$. Then (5.8.2) shows

(*)
$$|a_n|^{1/n} \le C^{1/n}/R.$$

If C = 0 this implies $a_n = 0$ for all n and hence $\rho = \infty$ and in particular $\rho \ge \rho'$. Thus we may assume that C > 0. Then (*) shows that for all $R < \rho'$ one has

$$\rho = \frac{1}{\limsup_n |a_n|^{1/n}} \ge R$$

because $\lim_{n} C^{1/n} = 1$. Hence $\rho \ge \rho'$.

Example 5.11. Let $f: \mathbb{C} \setminus \{1\} \to \mathbb{C}, f(z) := \exp(z)/(z-1)$. Then the radius of convergence of the power series for f at 0 (resp. at i) is 1 (resp. $\sqrt{2}$). The radius of convergence of the power series for $f: \mathbb{C} \setminus \{0\} \to \mathbb{C}, z \mapsto \frac{\exp(z)-1}{z}$ at any $z_0 \in \mathbb{C} \setminus \{0\}$ is ∞ (we will see that f can be extended holomorphically to 0).

Corollary 5.12. Let $U \subseteq \mathbb{C}$ be open and let $f: U \to \mathbb{C}$ be continuous such that

$$\int_{\gamma} f \, dz = 0$$

for every piecewise \mathcal{C}^1 -loop γ in U. Then f is holomorphic.

In fact, it suffices to take triangular loops γ (see Exercise).

Proof. Theorem 2.28 $\Rightarrow \exists F: U \to \mathbb{C}$ a \mathcal{C}^1 -map with dF = fdz. In particular $\frac{\partial F}{\partial \overline{z}} = 0$. Hence F is holomorphic with F' = f by Proposition 4.2. Therefore f is holomorphic by Theorem 5.9.

Theorem 5.13 (Riemann extension theorem). Let $U \subseteq \mathbb{C}$ be open, $z_0 \in U$. Let $f: U \setminus \{z_0\} \to \mathbb{C}$ be holomorphic and bounded near z_0 (i.e., $\exists \varepsilon > 0, C \in \mathbb{R}^{\geq 0}$ such that $|f(z)| \leq C$ for all $z \in B_{\varepsilon}(z_0) \setminus \{z_0\}$). Then there exists a unique holomorphic function $\tilde{f}: U \to \mathbb{C}$ with $\tilde{f}_{|U \setminus \{z_0\}} = f$.

Proof. The uniqueness of \tilde{f} is clear because $U \setminus \{z_0\}$ is dense in U. We show the existence. After translation we may assume that $z_0 = 0$ (to simplify the notation). As f is bounded near $z_0 = 0$, the function

$$F: U \to \mathbb{C}, \qquad F(z) := \begin{cases} f(z)z, & z \neq 0; \\ 0, & z = 0; \end{cases}$$

is holomorphic on $U \setminus \{0\}$ and continuous on U.

(i). Let us first assume that there exists a continuous extension \tilde{f} of f. Applying Exercise 18(b)⁴ to \tilde{f} , we see that \tilde{f} is holomorphic. Hence the theorem is proved under the above additional assumption.

(*ii*). We can now apply (ii) to the function F and see that F is holomorphic. In particular $F'(0) = \lim_{z\to 0} f(z)$ exists. Hence f can be extended to a continuous function \tilde{f} on U. Using again (ii) we see that \tilde{f} is holomorphic.

⁴Aufgabe 18(b): Let $U \subseteq \mathbb{C}$ be open, $f: U \to \mathbb{C}$ continuous such that $f_{|U \setminus \mathbb{R}}$ is holomorphic. Then f is holomorphic.

(C) Uniform limits of holomorphic functions

Theorem 5.14 (Weierstraß' theorem of convergence). Let $U \subseteq \mathbb{C}$ be open, $(f_k \colon U \to \mathbb{C})_{k \in \mathbb{N}}$ a locally uniformly convergent sequence of holomorphic functions. Set $f := \lim_{k \to \infty} f_k$.

- (1) f is holomorphic.
- (2) For all $n \in \mathbb{N}$, the sequence of n-th derivatives $(f_k^{(n)})_k$ converges locally uniformly to $f^{(n)}$.

Proof. It suffices to show that for all $z_0 \in U$ there exists an $\varepsilon > 0$ such that $f_{|B_{\varepsilon}(z_0)}$ is holomorphic and such that $(f_k^{(n)}|_{B_{\varepsilon}(z_0)})_k$ converges locally uniformly to $f^{(n)}|_{B_{\varepsilon}(z_0)}$. Thus we may assume that U is convex and in particular simply connected.

(1). We know that f is continuous by Analysis 2. By Lemma 5.12 it suffices to show that $\int_{\gamma} f dz = 0$ for every loop γ in U. As f_k is holomorphic and as U is simply connected, we have $\int_{\gamma} f_k dz = 0$ for all loops γ and all k (Cauchy's theorem 4.11). As $\int_{\gamma}(\cdot)$ commutes with locally uniform limit (Proposition 2.20), this implies $\int_{\gamma} f dz = 0$ for every loop γ in U.

(2). Let $z_0 \in U$. Choose R > 0 so small such that $B_R(z_0) \subseteq U$ and such that f_k converges uniformly to f on $\overline{B_R(z_0)}$ (possible because $f_k \to f$ locally uniformly). Let $\varepsilon > 0$. Then there exists $k_0 \in \mathbb{N}$ such that $|f_k(z) - f(z)| \leq \varepsilon$ for all $z \in \overline{B_R(z_0)}$ and for all $k \geq k_0$. For all $w \in B_{R/2}(z_0)$ we then have $|w - z| \geq R/2$ for all $z \in \partial B_R(z_0)$. Therefore we find for $w \in B_{R/2}(z_0)$ and for all $k \geq k_0$:

$$|f^{(n)}(w) - f^{(n)}_{k}(w)| = |(f - f_{k})^{(n)}(w)|$$

$$\stackrel{(5.8.1)}{=} |\frac{n!}{2\pi i} \int_{\partial B_{R}(z_{0})} \frac{f(z) - f_{k}(z)}{(z - w)^{n+1}} dz|$$

$$\leq \frac{n!}{2\pi} \frac{\varepsilon}{(R/2)^{n+1}} R 2\pi = \varepsilon C,$$

where C is a constant not depending on ε , k, or on w. This shows that $(f_k^{(n)})_k$ converges locally uniformly to $f^{(n)}$.

Remark 5.15. Note that this is totally different from the real setting. There Weierstraß approximation theorem tells us that every continuous function on [a, b] is the uniform limit of polynomial functions (\Rightarrow uniform limits of polynomials are not necessarily differentiable).

Nevertheless one can ask whether every holomorphic function f is a uniform limit of polynomials. More precisely: Let $K \subset \mathbb{C}$ be compact.

Question: Does there exist for every f that is holomorphic on some open neighborhood of K a sequence of polynomial functions converging uniformly on K to f?

In general this is certainly not true: As polynomials p are holomorphic functions on \mathbb{C} and \mathbb{C} is simply connected, we have $\int_{\gamma} p \, dz = 0$ for every loop γ . As \int_{γ} commutes with uniform limit, we also should have $\int_{\gamma} f \, dz = 0$ for every loop in K. Thus we at least need K to be simply connected. In fact one can show that in this case the

above question has indeed a positive answer (Runge's theorem, see e.g. John Conway: *Functions of One Complex Variable*, 2nd edition, Springer (1978), Chap. VIII).

(D) Liouville's theorem

Definition 5.16. A holomorphic function on \mathbb{C} is called *entire* (German: *ganz*).

Corollary 5.17. Let $c, M \in \mathbb{R}^{\geq 0}$ and let f be an entire function. Assume that

$$\|f\|_{\partial B_R(0)} \le MR^c$$

for R large enough (i.e., $\exists R_0 \in \mathbb{R}^{>0}$ such that $||f||_{\partial B_R(0)} \leq MR^c$ for all $R \geq R_0$). Then f is a polynomial of degree $\leq c$.

Proof. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be the power series expansion of f on $z_0 = 0$. By (5.8.2) we have for all n > c

$$|a_n| \le \frac{MR^c}{R^n} \xrightarrow{R \to \infty} 0.$$

Corollary 5.18 (Liouville). A bounded entire function is constant.

Proof. Corollary 5.17 with c = 0.

Corollary 5.19 (Main Theorem of Algebra). \mathbb{C} is algebraically closed.

Proof. Let $p: \mathbb{C} \to \mathbb{C}$, $p(z) := a_n z^n + \cdots + a_1 z + a_0$, $a_i \in \mathbb{C}$, $a_n \neq 0$ be a non-constant polynomial function (i.e., $n \geq 1$). We have to show that p has a zero. Assume that $p(z) \neq 0$ for all $z \in \mathbb{C}$. Then f = 1/p is an entire function. Moreover, for every sequence $(z_n)_n$ in \mathbb{C} with $\lim_n |z_n| = \infty$ one has $\lim_n |p(z_n)| = |a_n| |z_n| = \infty$. Hence f is bounded. Contradiction to Corollary 5.18.

(E) Identity theorem

Lemma 5.20. Let $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$ be a non-zero power series with radius of convergence $\rho > 0$. Let $m := \operatorname{ord}_{z_0}(f) := \inf\{n \in \mathbb{N}_0 ; a_n \neq 0\}.$

(1) Then $f(z) = a_m(z-z_0)^m(1+h(z))$, where h(z) is a power series of the form $h(z) = b_1(z-z_0) + b_2(z-z_0)^2 + \dots$ with radius of convergence ρ .

(2) There exists $0 < r \le \rho$ such that $f(z) \ne 0$ for all $z \in B_r(z_0) \setminus \{z_0\}$.

Proof. (1).

$$f(z) = a_m (z - z_0)^m + a_{m+1} (z - z_0)^{m+1} + \dots$$

= $a_m (z - z_0)^m (1 + b_1 (z - z_0) + b_2 (z - z_0)^2 + \dots)$

with $b_k = a_{m+k}/a_m$ for $k \in \mathbb{N}$. Then $\limsup_k |b_k|^{1/k} = \limsup_n |a_n|^{1/n}$ (because $\lim_k |a_m|^{1/k} = 1$). This shows (1).

(2). As $h: B_{\rho}(z_0) \to \mathbb{C}$ is continuous and $h(z_0) = 0$, there exists $0 < r \le \rho$ such that |h(z)| < 1 for $z \in B_r(z_0)$ and hence $f(z) = a_m(z-z_0)^m(1+h(z)) \ne 0$ for $z \ne z_0$. \Box

Proposition 5.21. Let $U \subseteq \mathbb{C}$ be open, $f: U \to \mathbb{C}$ holomorphic. Then

 $\operatorname{supp}(f) := \overline{\{z \in U \ ; \ f(z) \neq 0\}} \qquad (closure \ in \ U!)$

is open and closed in U.

Proof. We only have to show that $\operatorname{supp}(f)$ is open in U. Let $z_0 \in \operatorname{supp}(f)$. Then there exists no $z_0 \in W \subseteq U$ open with $f_{|W} = 0$. Thus Lemma 5.20 (2) shows that there exists r > 0 with $f(z) \neq 0$ for $z \in B_r(z_0) \setminus \{z_0\}$ and hence $B_r(z_0) \subseteq \operatorname{supp}(f)$.

Definition 5.22. Let X be a topological space. A subspace S of X is called *discrete*, if the induced topology is the discrete topology ($\Leftrightarrow \forall s \in S \exists s \in U \subseteq X$ open such that $U \cap S = \{s\}$).

Sometimes "discrete" is defined differently. With this definition the subspace $\{1/n; n \in$ \mathbb{N} of \mathbb{C} is discrete.

Proposition 5.23. Let $G \subseteq \mathbb{C}$ be a domain. Let $f: G \to \mathbb{C}$ be holomorphic with $f \neq 0$. Then $\{z \in G ; f(z) = 0\}$ is a discrete subspace of G.

Proof. Let $z_0 \in G$ with $f(z_0) = 0$. As f is analytic, there exists by Lemma 5.20 (2) either r > 0 such that $f(z) \neq 0$ for $z \in B_r(z_0) \setminus \{z_0\}$, or f = 0 in some neighborhood of z_0 .

Assume the latter case occurs, i.e. $z_0 \notin \operatorname{supp}(f)$. As G is connected, Proposition 5.21 shows that $\operatorname{supp}(f) = \emptyset$ and hence f = 0; contradiction.

Theorem 5.24 (Identity Theorem). Let $G \subseteq \mathbb{C}$ be a domain. Let $f, g: G \to \mathbb{C}$ be holomorphic. Then the following assertions are equivalent.

- (i) f = g.
- (ii) There exists a non-discrete subspace $S \subseteq G$ such that f(z) = g(z) for all $z \in S$.

(iii) There exists a point $z_0 \in G$ such that $f^{(n)}(z_0) = g^{(n)}(z_0)$ for all $n \in \mathbb{N}_0$ (in other words: f and g have the same power series expansion in z_0).

Proof. "(i) \Rightarrow (iii)": clear.

"(iii) \Rightarrow (ii)": (iii) implies that f and q have the same power series expansion in z_0 and hence are equal on some neighborhood of z_0 .

"(ii) \Rightarrow (i)": Apply Proposition 5.23 to f - g.

Special functions 6

Extension of real analytic functions (A)

Corollary 6.1. Let $G \subseteq \mathbb{C}$ be a domain with $G \cap \mathbb{R} \neq \emptyset$. Let $f, g: G \to \mathbb{C}$ be holomorphic with $f_{|G \cap \mathbb{R}} = g_{|G \cap \mathbb{R}}$. Then f = g.

Proof. $G \cap \mathbb{R}$ is non-discrete.

Remark 6.2 (Exponential function).

- (1) The exponential function exp: $\mathbb{C} \to \mathbb{C}$ is the unique holomorphic function $f : \mathbb{C} \to \mathbb{C}$ such that $f(x) = e^x$ for all $x \in \mathbb{R}$.
- (2) For $z, w \in \mathbb{C}$ one has

$$\exp(z+w) = \exp(z)\exp(w).$$

Hence $\exp(z) \neq 0$ for all $z \in \mathbb{C}$ and $\exp: (\mathbb{C}, +) \to (\mathbb{C}^{\times}, \cdot)$ is a group homomorphism.

- (3) exp: $\mathbb{C} \to \mathbb{C}^{\times}$ is surjective: For all $z = r \exp(i\varphi) \in \mathbb{C}^{\times}$ $(r \in \mathbb{R}^{>0}, \varphi \in \mathbb{R})$ there exists $w \in \mathbb{C}$ with $\exp(w) = z$ (take $w = s + i\varphi$ with $s \in \mathbb{R}$ such that $\exp(s) = r$).
- (4) Let $z, \tilde{z} \in \mathbb{C}$. Then $\exp(z) = \exp(\tilde{z}) \Leftrightarrow \exists k \in \mathbb{Z}$ with $\tilde{z} = 2\pi i k + z$. In particular:

$$\ker(\exp) := \{ z \in \mathbb{C} ; \exp(z) = 1 \} = 2\pi i \mathbb{Z} := \{ 2\pi i k ; k \in \mathbb{Z} \}.$$

Proof. Write z = x + iy, $\tilde{z} = \tilde{x} + i\tilde{y}$ with $x, y, \tilde{x}, \tilde{y} \in \mathbb{R}$. Then

$$\exists k \in \mathbb{Z} : \tilde{z} = 2\pi i k + z \Rightarrow \exp(\tilde{z}) = \exp(2\pi i k) \exp(z) = \exp(z)$$

$$\Rightarrow \exp(\tilde{x}) \exp(i\tilde{y}) = \exp(x) \exp(iy)$$

$$polar decomp. \\ \Rightarrow \exp(\tilde{x}) = \exp(x), \exists k \in \mathbb{Z} : \tilde{y} = 2\pi k + y$$

$$\Rightarrow \exists k \in \mathbb{Z} : \tilde{z} = 2\pi i k + z.$$

Hence exp yields an isomorphism of groups $\mathbb{C}/(2\pi i\mathbb{Z}) \xrightarrow{\sim} \mathbb{C}^{\times}$.

Remark 6.3 (Sine and Cosine). The holomorphic functions $z \mapsto \sin^2(z) + \cos^2(z)$ and $z \mapsto 1$ on \mathbb{C} are equal on $\mathbb{R} \stackrel{6.1}{\Rightarrow} \sin^2(z) + \cos^2(z) = 1$ for all $z \in \mathbb{C}$.

(B) Logarithm

Proposition and Definition 6.4. Let $G \subseteq \mathbb{C}$ be open and simply connected and let $f: G \to \mathbb{C}$ be a holomorphic function with $f(z) \neq 0$ for all $z \in G$.

- (1) There exists a holomorphic function $L_f: G \to \mathbb{C}$ such that $\exp \circ L_f = f$. Such an L_f is called a branch of the logarithm of f on G.
- (2) If L_f and L_f are two branches of the logarithm of f on G, then there exists $k \in \mathbb{Z}$ such that $\tilde{L}_f(z) = L_f(z) + 2\pi i k$ for all $z \in G$.
- (3) For every branch L_f of the logarithm of f one has for $z \in G$:

$$L'_f(z) = \frac{f'(z)}{f(z)}$$

Proof. (3). If L_f is a branch of the logarithm of f, we have for $z \in G$

$$f'(z) = \exp'(L_f(z))L'_f(z) = f(z)L'_f(z)$$

(1). The function $G \to \mathbb{C}$, $z \mapsto f'(z)/f(z)$ is holomorphic. Hence there exists a primitive $L_f: G \to \mathbb{C}$ by Cauchy's theorem 4.11. Then

$$\left(\frac{f(z)}{\exp(L_f(z))}\right)' = \frac{f'(z)\exp(L_f(z)) - f(z)L'_f(z)\exp(L_f(z))}{\exp(L_f(z))^2} = 0$$

Hence there exists $\alpha \in \mathbb{C}^{\times}$ such that $\exp \circ L_f = \alpha f$. Replacing L_f by $L_f + \beta$, where $\beta \in \mathbb{C}$ with $\exp(\beta) = \alpha^{-1}$, we obtain a branch of the logarithm of f.

(2). For $z \in G$ we have $\exp(\tilde{L}_f(z) - L_f(z)) = f(z)/f(z) = 1$. Thus $\tilde{L}_f - L_f$ is a continuous (even holomorphic) function $G \to S := \{2\pi ik ; k \in \mathbb{Z}\} \subseteq \mathbb{C}$ by Remark 6.2 (4). As S is discrete and G is connected, $\tilde{L}_f - L_f$ is constant.

Applying this proposition to f(z) = z we obtain:

Corollary 6.5. Let $G \subseteq \mathbb{C}$ be open and simply connected with $0 \notin G$.

- (1) There exists a function $L: G \to \mathbb{C}$ (called a branch of the logarithm) such that $\exp(L(z)) = z$ for all $z \in G$.
- (2) If $L, \tilde{L}: G \to \mathbb{C}$ are two branches of the logarithm, then there exists $k \in \mathbb{Z}$ with $\tilde{L}(z) = L(z) + 2\pi i k$ for all $z \in G$.
- (3) One has L'(z) = 1/z for all branches L of the logarithm.

Remark and Definition 6.6. Let $G \subseteq \mathbb{C}$ open and simply connected with $0 \notin G$. Assume that $G \cap \mathbb{R}^{>0}$ is a non-empty interval. Then there exists a unique branch of the logarithm $G \to \mathbb{C}$ such that its restriction to $G \cap \mathbb{R}^{>0}$ is the logarithm log defined in Analysis 1.

This branch is called the *principal branch of logarithm on* G.

Proof. The uniqueness follows from Corollary 6.1. Choose $w_0 \in G \cap \mathbb{R}^{>0}$ and define a primitive of 1/z (Remark 4.12) by

$$L: G \to \mathbb{C}, \qquad w \mapsto \int_{w_0}^w \frac{1}{z} dz - \log(w_0),$$

where $\int_{w_0}^w$ denotes the path integral over some path in G with startpoint w_0 and endpoint w (well defined because G is simply connected and hence all such paths are homotopic). For $x \in G \cap \mathbb{R}^{>0}$ we may take the line segment from w_0 to x (because $G \cap \mathbb{R}^{>0}$ is an interval) and obtain indeed the one-dimensional integral $L(x) = \int_{w_0}^x 1/t \, dt - \log(w_0)$ and hence the usual logarithm. Moreover we have $\exp(L(x)) = x$ for all $x \in G \cap \mathbb{R}^{>0}$ and hence $\exp(L(z)) = z$ for all $z \in G$ by the identity theorem. Thus L is indeed a branch of the logarithm. \Box

Example 6.7. It is standard to consider

$$G := \mathbb{C} \setminus \{ z \in \mathbb{R} ; z \le 0 \} = \{ re^{i\varphi} \in \mathbb{C} ; r \in \mathbb{R}^{>0}, -\pi < \varphi < \pi \}.$$

Then the principal branch of logarithm on G is given by

(6.7.1)
$$\log: G \to \mathbb{C}, \qquad re^{i\varphi} \mapsto \underbrace{\log(r)}_{\text{usual real log}} + i\varphi.$$

(C) Powers and roots

Notation: In this subsection let $G \subseteq \mathbb{C}$ be open and simply connected, $f: G \to \mathbb{C}$ holomorphic with $f(z) \neq 0$ for all $z \in G$.

Definition 6.8. Let $q \in \mathbb{C}$. A holomorphic function of the form

 $G \to \mathbb{C}, z \mapsto \exp(qL_f(z)),$

where $L_f: G \to \mathbb{C}$ is a branch of the logarithm of f, is called a *q*-th power of f.

It is easy to see that if h is a q-th power of $f \ (q \in \mathbb{C}^{\times})$, then f a (1/q)-th power of h.

Remark 6.9. Let $n \in \mathbb{N}$ and let q = 1/n. Then a q-th power of f is also called an n-th root of f.

Let $r_{f,n}, \tilde{r}_{f,n} \colon G \to \mathbb{C}$ be two *n*-th roots of *f*.

(1) There exists $k \in \{0, \ldots, n-1\}$ such that

$$\tilde{r}_{f,n}(z) = \exp(\frac{2\pi ik}{n})r_{f,n}(z)$$

for all $z \in G$ (by Proposition 6.4 (2)).

(2) For all $z \in G$ we have

$$(r_{f,n})^n(z) = \exp(\frac{1}{n}L_f(z))^n \stackrel{\exp(w)^n = \exp(nw)}{=} \exp(L_f(z)) = f(z).$$

and

$$r'_{f,n}(z) = \frac{1}{n} \frac{f'(z)}{f(z)} r_{f,n}(z).$$

7 Properties of holomorphic functions II

(A) Biholomorphic maps and local description of holomorphic functions

Definition 7.1. Let $U, U' \subseteq \mathbb{C}$ be open.

- (1) A bijective map $f: U \to U'$ is called *biholomorphic* or *conformal* if f and f^{-1} are holomorphic.
- (2) A holomorphic function $f: U \to \mathbb{C}$ is called *locally biholomorphic* if for all $z \in U$ there exist open neighborhoods $z \in W \subseteq U$ and $f(z) \in W' \subseteq \mathbb{C}$ such that $f_{|W}: W \to W'$ is biholomorphic.

Remark 7.2. Let $U, U' \subseteq \mathbb{C}$ be open.

- (1) A biholomorphic map $f: U \to U'$ is a homeomorphism.
- (2) The Inverse Function Theorem (Theorem 1.9) shows that a holomorphic function $f: U \to \mathbb{C}$ is locally biholomorphic if and only if $f'(z) \neq 0$ for all $z \in U$.
- (3) exp is locally biholomorphic on \mathbb{C} (because $\exp'(z) = \exp(z) \neq 0$ for all $z \in \mathbb{C}$) but not biholomorphic.

Theorem 7.3. Let $U \subseteq \mathbb{C}$ be open, $f: U \to \mathbb{C}$ holomorphic. Let $z_0 \in U$ and let

$$f(z) = a_0 + \sum_{n=m}^{\infty} a_n (z - z_0)^n, \quad \text{with } m \in \mathbb{N} \text{ and } a_m \neq 0$$

Then there exist open neighborhoods $0 \in W \subseteq \mathbb{C}$ and $z_0 \in W' \subseteq U$ and a biholomorphic map $\varphi \colon W \to W'$ such that $f(\varphi(w)) = a_0 + w^m$ for all $w \in W$.

In other words: Locally, after a change of charts $w \mapsto \varphi(w), f$ is of the form $f(w) = a_0 + w^m$.

Proof. Replacing f by $f-a_0$ and z by $z+z_0$ we may assume that $a_0 = 0$ and $z_0 = 0$. We are looking for open neighborhoods W and W' of 0 and a biholomorphic $\Phi: W' \to W$ such that $f(z) = \Phi(z)^m$ for $z \in W$ (then take $\varphi := \Phi^{-1}$). We have

$$f(z) = a_m z^m g(z),$$

where $g: U \to \mathbb{C}$ is holomorphic with g(0) = 1 (Lemma 5.20 (1)). Hence we can find $0 \in V' \subseteq U$ open such that $g(z) \neq 0$ for all $z \in V'$ and such that V' is an open disc and in particular simply connected. Then by Remark 6.9 there exists a holomorphic function $\tilde{g}: V' \to \mathbb{C}$ such that $\tilde{g}^m = g$. In particular $\tilde{g}(0) \neq 0$. Moreover let $a \in \mathbb{C}^{\times}$ with $a^m = a_m$. Then

$$f(z) = (\Phi(z))^m$$
, with $\Phi: V' \to \mathbb{C}, \ \Phi(z) = az\tilde{g}(z)$.

Moreover $\Phi'(0) = a\tilde{g}(0) \neq 0$. Hence by Theorem 1.9 there exist $0 \in W' \subseteq V'$ open and $0 = \Phi(0) \in W \subseteq \mathbb{C}$ open such that $\Phi: W' \to W$ is biholomorphic. Set $\varphi := \Phi^{-1}$. \Box

Corollary 7.4. Let $U \subseteq \mathbb{C}$ be open, $f: U \to \mathbb{C}$ holomorphic. Assume that f is injective. Then V := f(U) is open in \mathbb{C} and $f: U \to V$ is biholomorphic (in particular: $f'(z) \neq 0$ for all $z \in U$).

Proof. As $f: U \to V$ is bijective, there exists an inverse map $g: V \to U$. It suffices to show that $f'(z_0) \neq 0$ for all $z_0 \in U$ ($\Rightarrow f$ locally biholomorphic $\Rightarrow V$ open and gholomorphic). Write $f(\varphi(w)) = a_0 + w^m$ as in Theorem 7.3. A look at the power series expansion $f(z) = \sum_{n\geq 0} a_n(z-z_0)^n$ shows that $f'(z_0) \neq 0$ if and only if $a_1 \neq 0$, i.e., if and only if m = 1. As φ is injective, $w \mapsto a_0 + w^m$ is injective on a neighborhood of 0. Hence m = 1 and therefore $f'(z_0) \neq 0$.

Example 7.5. Let

$$\log: G := \{ re^{i\varphi} ; r \in \mathbb{R}^0, -\pi < \varphi < \pi \} \to \mathbb{C}, \qquad re^{i\varphi} \mapsto \log(r) + i\varphi$$

be the principal branch of logarithm on G (Example 6.7.1). Then log is injective (because $\exp \circ \log = \operatorname{id}_G$) and hence log is a biholomorphic map from G onto the vertical strip $\{z \in \mathbb{C} ; -\pi < \operatorname{Im}(z) < \pi\}$ by Corollary 7.4.

(B) Open Mapping Theorem

Definition 7.6.

- (1) Let X and Y be topological spaces. A map $f: X \to Y$ is called *open* if f(U) is open in Y for every open subset U of X.
- (2) Let X be a topological space. A basis of of X^5 is a set \mathcal{B} of open subsets of X such that every open subset of X is a union of subsets in \mathcal{B} .

Remark 7.7.

(1) Let (X, d) be a metric space and let $X = \bigcup_{i \in I} U_i$ with $U_i \subseteq X$ open. Then

$$\mathcal{B} := \{ B_r(x_0) ; x_0 \in X, r \in \mathbb{R}^{>0}, \exists i \in I : B_r(x_0) \subseteq U_i \} \}$$

is a basis of the topological space X.

(2) Let $f: X \to Y$ be a map of topological spaces X and Y, let \mathcal{B} be a basis of X. If f(V) is open in Y for all $V \in \mathcal{B}$, then f is open.

Proof. Let $U \subseteq X$ be open. Then $U = \bigcup_{i \in I} U_i$ with $U_i \in \mathcal{B}$ and hence $f(U) = \bigcup_{i \in I} f(U_i)$ is open in Y.

- (3) The composition of two open maps is again open.
- (4) Every homeomorphism is open.
- (5) Every locally biholomorphic map is open.

Theorem 7.8 (Open mapping theorem). Let $G \subseteq \mathbb{C}$ be a domain and let $f: G \to \mathbb{C}$ be holomorphic and not constant. Then f is open.

Proof. By Remark 7.7 (2) it suffices to check that for all $z_0 \in G$ there exists $z_0 \in U \subseteq G$ open such that $f(B_r(z_0))$ is open for all $r \in \mathbb{R}^{>0}$ with $B_r(z_0) \subseteq U$. Note that the Identity theorem implies: f not constant $\Rightarrow f_{|U}$ not constant for $\emptyset \neq U \subseteq G$ open. Thus by Theorem 7.3 we may assume that f is of the form $w \mapsto z_0 + w^m$ for some $m \in \mathbb{N}$. But this map clearly sends open discs to open discs.

(C) Maximum modulus principle

Recall: A subspace $I \subseteq \mathbb{R}^{\geq 0}$ is open and connected if and only if I is of the form I = (a, b) for real numbers 0 < a < b or of the from I = [0, b) for $b \in \mathbb{R}^{>0}$.

Example 7.9.

- (1) Let X and Y be topological spaces and endow $X \times Y$ with the product topology. Then the projections $X \times Y \to X$, $(x, y) \mapsto x$ and $X \times Y \to Y$, $(x, y) \mapsto y$ are open.
- (2) Let $(V, \|\cdot\|)$ be a normed \mathbb{R} -vector space. Then $\|\cdot\|: V \to \mathbb{R}^{\geq 0}$ is open.

Proof. Remark 7.7 (2) \Rightarrow It suffices to show that the image of $B_r(v)$ under $\|\cdot\|$ is open in $\mathbb{R}^{\geq 0}$ for all $v \in V$ and $r \in \mathbb{R}^{>0}$. But this image is $(\|v\| - r, \|v\| + r) \cap \mathbb{R}^{\geq 0}$. \Box

(3) In particular: The maps $\mathbb{C} \to \mathbb{R}$, $z \mapsto \operatorname{Re}(z)$ and $z \mapsto \operatorname{Im}(z)$ are open. The map $\mathbb{C} \to \mathbb{R}^{\geq 0}$, $z \mapsto |z|$ is open.

⁵This notion has nothing to do with the notion of a basis of a vector space.

Theorem 7.10 (Maximum/Minimum modulus principle). Let $G \subseteq \mathbb{C}$ be a domain, $f: G \to \mathbb{C}$ a holomorphic function. Assume that there exists $z_0 \in G$ and $z_0 \in W \subseteq G$ open such that one of the following conditions hold. (a) $|f(z)| \leq |f(z_0)|$ for all $z \in W$ (i.e. |f| has a local maximum in z_0). (b) $|f(z)| \geq |f(z_0)|$ for all $z \in W$ and $f(z_0) \neq 0$.

Then f is constant.

Proof. Assume f is non-constant. Then f is open (Theorem 7.8). As $|\cdot|: \mathbb{C} \to \mathbb{R}^{\geq 0}$ is also open (Example 7.9 (2)), |f|(W) is open in $\mathbb{R}^{\geq 0}$. But under assumptions (a) or (b) the point $|f(z_0)| \in |f|(W)$ is not an inner point. Contradiction.

Note: Under assumption (b) one has to exclude $|f(z_0)| = 0$ because sets of the form [0, b) are open in $\mathbb{R}^{\geq 0}$.

Corollary 7.11. Let $G \subseteq \mathbb{C}$ be a bounded domain, let \overline{G} be its closure. Let $f : \overline{G} \to \mathbb{C}$ be a continuous function such that $f_{|G}$ is holomorphic. Then

$$\sup_{z\in\bar{G}}|f(z)|=\max_{z\in\partial G}|f(z)|,$$

i.e., |f| attains its maximum on ∂G .

Proof. If f is constant, the assertion is trivial. Hence assume that f is non-constant. As G is bounded, \overline{G} and ∂G are compact. Therefore |f| attains its maximum on \overline{G} . But this cannot be in G if f is non-constant (Theorem 7.10).

Remark 7.12. As Re: $\mathbb{C} \to \mathbb{R}$ is open (Remark 7.9), the same argument as in the proof of Theorem 7.10 shows: G domain, $f: G \to \mathbb{C}$ holomorphic. Assume there exists $z_0 \in G$ such that $\operatorname{Re}(f(z_0)) \ge \operatorname{Re}(f(z))$ for all $z \in G$ or that $\operatorname{Re}(f(z_0)) \le \operatorname{Re}(f(z))$ for all $z \in G$. Then f is constant.

Similar for the imaginary part.

8 Homology and the winding number

(A) Digression: Covering Spaces

Notation: In this section, X and \tilde{X} always denote Hausdorff topological spaces.

Definition 8.1.

(1) A continuous map $p: \tilde{X} \to X$ is called a *covering* if for all $x \in X$ there exists $x \in U \subseteq X$ open such that

(8.1.1)
$$p^{-1}(U) = \bigsqcup_{i \in I} \tilde{U}_i$$
 disjoint union, $I \neq \emptyset$ some index set

for open sets $\tilde{U}_i \subseteq X$ such that $p_{|\tilde{U}_i} \colon \tilde{U}_i \to U$ is a homeomorphism for all $i \in I$. (2) A covering $p \colon \tilde{X} \to X$ is called a *universal covering* if \tilde{X} is simply connected.

Remark 8.2.

- (1) A covering is always a surjective map: For every U as in (8.1.1) and for every $y \in U$ we have a bijection $p^{-1}(\{y\}) \leftrightarrow I$.
- (2) The map $f: \mathbb{C} \to \mathbb{C}, z \mapsto z^2$ is surjective, but there exists no open neighborhood U of 0 such that $\#f^{-1}(\{z_0\}) = \#f^{-1}(\{0\}) = 1$ for all $z_0 \in U$.

Example 8.3.

- (1) The function $\mathbb{R} \to S^1 = \{ z \in \mathbb{C} ; |z| = 1 \}, x \mapsto e^{2\pi i x}$ is a universal covering.
- (2) The function exp: $\mathbb{C} \to \mathbb{C}^{\times}$ is a universal covering.

We will only prove (and use) (2). (1) is left as an exercise.

Complex analytic proof. As \mathbb{C} is simply connected, we only have to show that exp is a covering. For $y \in \mathbb{C}^{\times}$ let $V \subseteq \mathbb{C}^{\times}$ be simply connected domain with $y \in V$. Let $L: V \to \mathbb{C}$ be a branch of the logarithm (i.e. $\exp(L(z)) = z$ for all $z \in V$). Then an arbitrary branch of the logarithm on V is given by $L_k := L + 2\pi i k$ for $k \in \mathbb{Z}$ (Corollary 6.5). Set $U_k := L_k(V)$. Then U_k is open in \mathbb{C} by the Open mapping Theorem 7.8. Then $L_k: V \to U_k$ is bijective and holomorphic with inverse map $\exp_{|U_k}: U_k \to V$ (Corollary 7.4). Moreover

$$\exp^{-1}(V) = \bigsqcup_{k \in \mathbb{Z}} U_k$$

is a disjoint union of open sets (if there exists $z \in U_k \cap U_l$ then $z = L_k(\exp(z)) = L_l(\exp(z)) = L_k(\exp(z)) + 2\pi i(l-k)$ hence l = k).

Proposition 8.4. Let $p: \tilde{X} \to X$ be a covering, let $\gamma: [a, b] \to X$ be a path, and let $\tilde{x} \in \tilde{X}$ such that $p(\tilde{x}) = \gamma(a)$ (such \tilde{x} always exists because p is surjective). Then there exists a unique path $\tilde{\gamma}: [a, b] \to \tilde{X}$ such that

(*)
$$\tilde{\gamma}(a) = \tilde{x} \quad and \quad p \circ \tilde{\gamma} = \gamma.$$

Note, that even if γ is a loop, then $\tilde{\gamma}$ is not necessarily a loop.

Proof. Uniqueness. Let $\tilde{\gamma}_1$ and $\tilde{\gamma}_2$ be two paths satisfying (*). Then $Z := \{t \in [a,b] ; \tilde{\gamma}_1(t) = \tilde{\gamma}_2(t)\}$ is non-empty. It is closed because \tilde{X} is Hausdorff. Moreover for $t \in Z$ choose an open neighborhood U of $p(\tilde{\gamma}_i(t))$ as in (8.1.1). By continuity, $\tilde{\gamma}_1$ and $\tilde{\gamma}_2$ must map a neighborhood $t \in W \subseteq [a,b]$ into the same \tilde{U}_i . Hence $p \circ \tilde{\gamma}_1 = p \circ \tilde{\gamma}_2$ shows $\tilde{\gamma}_{1|W} = \tilde{\gamma}_{2|W}$. This shows that Z is also open. Hence Z = [a,b] because [a,b] is connected.

Existence. The existence of $\tilde{\gamma}$ is clear if $\gamma([a, b]) \subseteq U$ with U as in (8.1.1).

In general the compactness of [a, b] shows that there exist $a = a_0 < a_1 < \cdots < a_m = b$ such that for all $j = 1, \ldots, m$ one has $\gamma([a_{j-1}, a_j]) \subseteq U$ for some U as in (8.1.1). Hence we can lift $\gamma_{|[a_{j-1}, a_j]}$ successively.

(B) The winding number

Proposition 8.5. Let $z_0 \in \mathbb{C}$ and let γ be a loop in $\mathbb{C} \setminus \{z_0\}$. Then there exists $k \in \mathbb{Z}$ such that γ is loop homotopic in \mathbb{C}^{\times} to the loop

$$\beta_k \colon [0,1] \to \mathbb{C}^{\times}, \qquad t \mapsto z_0 + \exp(2\pi i k t).$$

Proof. We may assume that $z_0 = 0$. By Remark 3.4 (7) it suffices to show that every loop γ with startpoint 1 is homotopic to some β_k . As exp is a covering (Example 8.3), there exists a unique lift $\tilde{\gamma} \colon [0,1] \to \mathbb{C}$ such that $\tilde{\gamma}(0) = 0$ (Proposition 8.4). Then $\exp(\tilde{\gamma}(1)) = 1$ and hence there exists $k \in \mathbb{Z}$ such that $\tilde{\gamma}(1) = 2\pi i k$. As \mathbb{C} is simply connected, there exists a homotopy \tilde{H}_k of $\tilde{\gamma}$ and the line segment σ_k from 0 to $2\pi i k$ (i.e., $\sigma_k \colon [0,1] \to \mathbb{C}, \sigma_k(t) = 2\pi i k t$). But then $\exp \circ \tilde{H}$ is a homotopy of γ and $\exp \circ \sigma_k = \beta_k$.

In fact, the integer k then can be computed (by homotopy invariance of the integral) by

$$\frac{1}{2\pi i} \int_{\gamma} \frac{1}{z - z_0} dz = \frac{1}{2\pi i} \int_{\beta_k} \frac{1}{z - z_0} dz \stackrel{4.6}{=} k.$$

This leads us to the following definition.

Definition 8.6. Let $\gamma: [a, b] \to \mathbb{C}$ be a path and let $u \in \mathbb{C} \setminus \{\gamma\}$. Then

$$W(\gamma; u) := \frac{1}{2\pi i} \int\limits_{\gamma} \frac{1}{z - u} dz$$

is called the winding number (German: Umlaufzahl or Windungszahl) or the index of γ with respect to w.

Note: $z \mapsto 1/(z-u)$ is holomorphic on the open neighborhood $\mathbb{C} \setminus \{u\}$ of $\{\gamma\}$, thus $\int_{\gamma} \frac{1}{z-u} dz$ is defined for every path γ (Remark 4.7).

Proposition 8.7. Let $\gamma : [a, b] \to \mathbb{C}$ be a loop.

- (1) $W(\gamma; u)$ is an integer for all $u \in \mathbb{C} \setminus \{\gamma\}$.
- (2) The function

$$\mathbb{C} \setminus \{\gamma\} \to \mathbb{Z}, \qquad u \mapsto W(\gamma; u)$$

is locally constant (and hence constant on the path components of $\mathbb{C} \setminus \{\gamma\}$).

- (3) Let $G \subseteq \mathbb{C} \setminus \{\gamma\}$ be an⁶ unbounded path component. Then $W(\gamma; u) = 0$ for all $u \in G$.
- (4) Let $u \in \mathbb{C}$ and let γ and δ be loops that are loop homotopic in $\mathbb{C} \setminus \{u\}$. Then $W(\gamma; u) = W(\delta; u)$.

⁶In fact, using that $\{\gamma\}$ is compact, it is easy to see that there is only one unbounded path component.

Proof. (1). Proposition 8.5.

(2). The function is continuous (even holomorphic) by Lemma 5.7 and \mathbb{Z} -valued by (1). Hence it is locally constant.

(3). As G is not bounded, there exists for all $\varepsilon > 0$ an $u \in G$ such that $\sup\{1/(z - u) ; z \in \{\gamma\}\} \le \varepsilon$. Hence $W(\gamma; u) \le \varepsilon L(\gamma)$. Hence $W(\gamma; u) = 0$ for all $u \in G$ by (2). (4). Homotopy invariance of the path integral of holomorphic functions (Theorem 4.11).

Example 8.8. Let $z_0 \in \mathbb{C}$, $r \in \mathbb{R}^{>0}$, and $\gamma = \partial B_r(z_0)$. Then we have for $u \in \mathbb{C} \setminus \{\gamma\}$:

$$W(\gamma; u) = \begin{cases} 1, & u \in B_r(z_0); \\ 0, & u \notin \overline{B_r(z_0)}. \end{cases}$$

(C) First Homology group

Notation: In this subsection let X be a topological space.

Definition 8.9. Let S be a set. The *free abelian group generated by* S is the abelian group

 $\mathbb{Z}^{(S)} := \{ n \colon S \to \mathbb{Z} ; n \text{ map } s \mapsto n_s \text{ with } n_s = 0 \text{ for all but finitely many } s \in S \}.$

Elements $n \in \mathbb{Z}^{(S)}$ are usual written as $\sum_{s \in S} n_s s$ (a "formal linear combination"). In practice, we skip the summands with $n_s = 0$ and write also $n_1 s_1 + \cdots + n_r s_r$ with $n_i \in \mathbb{Z}, s_i \in S, r \in \mathbb{N}_0$.

Using the notation as formal linear combinations, the addition in $\mathbb{Z}^{(S)}$ is given by

$$\sum_{s \in S} n_s s + \sum_{s \in S} m_s s = \sum_{s \in S} (n_s + m_s)s.$$

 $\mathbb{Z}^{(S)}$ is a free \mathbb{Z} -module with basis $s \in S$.

Instead of \mathbb{Z} we can also take a field K and obtain a vector space $K^{(S)}$. (In fact, we may take any ring R and obtain the *free left R-module generated by S*.)

Definition 8.10. Let $C_1(X, \mathbb{Z})$ be the free abelian group generated by $S := \mathcal{C}([0, 1], X)$, the set of paths in X. An element $\Gamma \in C_1(X, \mathbb{Z})$ is called a *1-chain in* X. It is written as $\Gamma = \sum_{\gamma} n_{\gamma} \gamma$ or simply as $n_1 \gamma_1 + \cdots + n_r \gamma_r$ with $\gamma_i : [0, 1] \to X$ a path and $n_i \in \mathbb{Z}$. We consider paths $\gamma : [0, 1] \to X$ as the element $1 \cdot \gamma \in C_1(X, \mathbb{Z})$. For $\Gamma = n_1 \gamma_1 + \cdots + n_r \gamma_r \in C_1(X, \mathbb{Z})$ we define

$$\{\Gamma\} := \bigcup_{\substack{1 \le i \le r \\ n_i \ne 0}} \{\gamma_i\}.$$

Definition 8.11. (1) A *0-chain in* X is an element of $C_0(X, \mathbb{Z}) := \mathbb{Z}^{(X)}$, i.e., 0-chains are formal linear combinations $n_1x_1 + \ldots n_rx_r$ with $n_i \in \mathbb{Z}$ and $x_i \in X$.

- (2) Let $\Delta := \{ (x, y) \in \mathbb{R}^2 ; 0 \le y \le x \le 1 \}$ be the triangle in \mathbb{R}^2 with vertices (0, 0), (1,0), and (1,1). A 2-chain in X is an element of $C_2(X, \mathbb{Z}) := \mathbb{Z}^{(\mathcal{C}(\Delta, X))}$, i.e., 2-chains are formal linear combinations $n_1\delta_1 + \ldots n_r\delta_r$ with $n_i \in \mathbb{Z}$ and $\delta_i : \Delta \to X$ continuous.
- **Definition 8.12.** (1) Let $\gamma : [0,1] \to X$ be a path. Define $\partial_1(\gamma) := \gamma(1) + (-1)\gamma(0) \in C_0(X,\mathbb{Z})$. More generally, define a map

$$\partial_1 \colon C_1(X,\mathbb{Z}) \to C_0(X,\mathbb{Z}), \qquad \sum_{i=1}^r n_i \gamma_i \mapsto \sum_{i=1}^r n_i (\gamma_i(1) - \gamma_i(0)).$$

This is a group homomorphism.

(2) Let $\Delta = \{ (x, y) \in \mathbb{R}^2 ; 0 \le y \le x \le 1 \}$ as above. We describe its boundary with 3 paths:

$$\begin{aligned} (\partial \Delta)_1 \colon [0,1] \to \mathbb{R}^2, & t \mapsto (t,0), \\ (\partial \Delta)_2 \colon [0,1] \to \mathbb{R}^2, & t \mapsto (1,t), \\ (\partial \Delta)_3 \colon [0,1] \to \mathbb{R}^2, & t \mapsto (1-t,1-t). \end{aligned}$$

Let $\delta \colon \Delta \to X$ be continuous. Define

$$\partial_2(\delta) := \sum_{k=1}^3 \delta \circ (\partial \Delta)_k \in C_1(X, \mathbb{Z}).$$

More generally, define

$$\partial_2 \colon C_2(X,\mathbb{Z}) \to C_1(X,\mathbb{Z}), \qquad \sum_{i=1}^r n_i \delta_i \mapsto \sum_{i=1}^r n_i \partial_2(\delta_i).$$

This is a group homomorphism.

The homomorphisms ∂_1 and ∂_2 are called *boundary maps*. We also define $\partial_0 \colon C_0(X, \mathbb{Z}) \to 0$ the zero homomorphism and therefore have group homomorphisms

$$C_2(X,\mathbb{Z}) \xrightarrow{\partial_2} C_1(X,\mathbb{Z}) \xrightarrow{\partial_1} C_0(X,\mathbb{Z}) \xrightarrow{\partial_0} 0.$$

For $\delta: \Delta \to X$ one has $\partial_1(\partial_2(\delta)) = 0$ and hence

$$(8.12.1) \qquad \qquad \partial_1 \circ \partial_2 = 0.$$

Definition and Remark 8.13. Define for i = 0, 1 subgroups of $C_i(X, \mathbb{Z})$:

$$Z_i(X,\mathbb{Z}) := \ker(\partial_i), \qquad B_i(X,\mathbb{Z}) := \operatorname{im}(\partial_{i+1}).$$

Elements of $Z_i(X, \mathbb{Z})$ are called *i*-cycles. Elements of $B_i(X, \mathbb{Z})$ are called *i*-boundaries. We have:

(1) $Z_0(X,\mathbb{Z}) = C_0(X,\mathbb{Z}).$

(2) $Z_1(X,\mathbb{C})$ consists of those 1-chains $\sum_{i=1}^r n_i \gamma_i$ such that every point $x \in X$ one has

$$\sum_{\substack{1 \le i \le r \\ x = \gamma_i(0)}} n_i = \sum_{\substack{1 \le i \le r \\ x = \gamma_i(1)}} n_i$$

i.e., such that every point is as often startpoint as it is an endpoint. (3) As $\partial_1 \circ \partial_2 = 0$,

$$B_1(X,\mathbb{Z}) \subseteq Z_1(X,\mathbb{Z}) \subseteq C_1(X,\mathbb{Z}).$$

For i = 0, 1 we call $H_i(X, \mathbb{Z}) := Z_i(X, \mathbb{Z})/B_i(X, \mathbb{Z})$ the *i*-th singular homology group of X. Two *i*-chains $\Gamma, \Gamma' \in C_i(X, \mathbb{Z})$ are called homologous in X, if $\Gamma - \Gamma' \in B_i(X, \mathbb{Z})$. An *i*-chain Γ is called null-homologous in U, if $\Gamma \in B_i(X, \mathbb{Z})$.

Remark 8.14. The map $X \to \pi_0(X)$ that sends a point $x \in X$ to the path component of X containing x yields an isomorphism $H_0(X, \mathbb{Z}) \xrightarrow{\sim} \mathbb{Z}^{(\pi_0(X))}$ of groups. In other words: Two points $x, x' \in X$ are homologous if and only x and x' lie in the same path-component of X.

Proof. Exercise

(D) Homology, winding numbers, and homotopy

Definition 8.15. Let $X = V, W = \mathbb{R}^m$ be finite-dimensional \mathbb{R} -vector spaces.

- (1) A 1-chain $\Gamma = n_1 \gamma_1 + \cdots + n_r \gamma_r$ in V is called *piecewise* C^1 if every path γ_i with $n_i \neq 0$ is piecewise C^1 .
- (2) Let $\Gamma = n_1 \gamma_1 + \ldots n_r \gamma_r$ be a 1-chain in V, let $\omega : \{\Gamma\} \to \operatorname{Hom}_{\mathbb{R}}(V, W)$ be a continuous W-valued 1-form. Assume that Γ is piecewise \mathcal{C}^1 or that there exists an open neighborhood U of $\{\Gamma\}$ and a closed W-valued 1-form $\tilde{\omega}$ on U such that $\tilde{\omega}_{|\{\Gamma\}} = \omega$. Then define

$$\int_{\Gamma} \omega := \sum_{i=1}^{r} n_i \int_{\gamma_i} \omega.$$

(3) Let $V = W = \mathbb{C}$, $u \in \mathbb{C}$ and let Γ be a 1-chain in $\mathbb{C} \setminus \{u\}$ (i.e. $\{\Gamma\} \subseteq \mathbb{C} \setminus \{u\}$). Then define the *winding number*

$$W(\Gamma; u) := \frac{1}{2\pi i} \int_{\Gamma} \frac{1}{z - u} \, dz.$$

Proposition 8.16. Let $U \subseteq \mathbb{C}$ be open, and let $\Gamma, \Gamma' \in C_1(U, \mathbb{Z})$ be two 1-chains in U. Then Γ and Γ' are homologous in U if and only if

(*)
$$\begin{aligned} \partial_1(\Gamma) &= \partial_1(\Gamma') \\ and & W(\Gamma; u) = W(\Gamma'; u) \qquad \forall \, u \in \mathbb{C} \setminus U. \end{aligned}$$

In particular we have for $\Gamma \in Z_1(U, \mathbb{Z})$:

 Γ null-homologous in $U \Leftrightarrow W(\Gamma; u) = 0 \quad \forall u \in \mathbb{C} \setminus U.$

The hypothesis " $\partial_1(\Gamma) = \partial_1(\Gamma')$ " is in particular satisfied if $\Gamma, \Gamma' \in Z_1(U, \mathbb{Z})$. In the sequel we will take (*) as a definition of "homologous" and we will not use

Proposition 8.16. Proof. W. Fulton: Algebraic Topology, A first course, Springer (1995), Theorem 6.11

X. If γ and γ' are homotopic, then γ and γ' are homologous.

+ Exercise 6.13 **Proposition 8.17.** Let X be a topological space and let $\gamma, \gamma' \colon [0,1] \to U$ be paths in

There exist open subsets U of $\mathbb C$ and loops in U that are null-homologous in U but not null-homotopic in U.

We will prove the proposition only if X = U is open in \mathbb{C} . For a proof that works in the general case, see: W. Fulton: Algebraic Topology, A first course, Springer (1995), Lemma 6.4.

Proof. If γ and γ' are homotopic in U, then

$$\partial_1(\gamma) = \gamma(1) - \gamma(0) = \gamma'(1) - \gamma'(0) = \partial_1(\gamma') \in C_0(U, \mathbb{Z}).$$

Moreover, Cauchy's theorem (Theorem 4.11) shows that $W(\gamma; u) = W(\gamma'; u)$ for $u \in$ $\mathbb{C} \setminus U$. Therefore Proposition 8.16 shows that γ and γ' are homologous.

Remark 8.18. Let X be a topological space. Proposition 8.17 shows that we obtain for $x_0 \in X$ a well defined map

(8.18.1)
$$h := h_{X,x_0} \colon \pi_1(X,x_0) \to H_1(X,\mathbb{Z}), \quad [\gamma] \mapsto \gamma + B_1(U,\mathbb{Z})$$

We claim that this is a group homomorphism. We show the claim again only if X = Uis open in \mathbb{C} . For $\gamma, \delta \in \pi_1(U, x_0)$ the loop $\gamma \cdot \delta$ and the 1-cycle $\gamma + \delta$ have the same winding numbers and hence they are homologous. This shows that h_{U,x_0} is a group homomorphism.

Proposition 8.19. Let X be a path-connected topological space, let $x \in X$. Consider the group homomorphism $h_{X,x} \colon \pi_1(X,x) \to H_1(X,\mathbb{Z})$ (8.18.1).

- (1) $h_{X,x}$ is surjective
- (2) Its kernel of $h_{X,x}$ is the derived group $\pi_1(X,x)^{\text{der}}$ of $\pi_1(X,x)$, i.e. the subgroup generated by $\gamma \delta \gamma^{-1} \delta^{-1}$ for $\gamma, \delta \in \pi_1(X, x)$.

Therefore $h_{X,x}$ induces an isomorphism of abelian groups

$$\pi_1(X, x)^{\operatorname{ab}} := \pi_1(X, x) / \pi_1(X, x)^{\operatorname{der}} \xrightarrow{\sim} H_1(X, \mathbb{Z}).$$

Proof. We will only prove (and use in the sequel) the surjectivity of $h_{X,x}$ (for a proof of Assertion (2) see: W. Fulton: Algebraic Topology, A first course, Springer (1995), Theorem 12.22).

Let $\Gamma = \sum_{i=1}^{r} n_i \gamma_i \in Z_1(X, \mathbb{Z})$, where $n_i \in \mathbb{Z}$ and γ_i a path with startpoint $p_i \in X$ and endpoint $q_i \in X$. For each point $c \in X$ that occurs as an endpoint or as a startpoint of any γ_i , choose a path τ_c from x to c (this is possible because X is path connected). Set

$$\tilde{\gamma}_i := \tau_{p_i} \cdot \gamma_i \cdot \tau_{q_i}^-.$$

This is a loop with startpoint x. Let $[\tilde{\gamma}_i] \in \pi_1(X, x)$ be its homotopy class and let

$$\gamma := [\tilde{\gamma}_1]^{n_1} \cdots [\tilde{\gamma}_1]^{n_r} \in \pi_1(X, x).$$

Then $h_{X,x}$ sends γ to the following element in $H_1(X,\mathbb{Z})$:

$$\sum_{i=1}^r n_i \tilde{\gamma}_i = \sum_{i=1}^r n_i (-\tau_{q_i} + \gamma_i + \tau_{p_i}) \stackrel{\Gamma \in Z_1}{=} \sum_{i=1}^r n_i \gamma_i = \Gamma \in H_1(X, \mathbb{Z})$$

This shows the surjectivity of $h_{X,x}$.

Corollary 8.20. Let X be a simply connected topological space. Then $H_1(X, \mathbb{Z}) = 0$.

Proof. Choose $x \in X$. X simply connected $\Leftrightarrow \pi_1(X, x) = 0$, hence $H_1(X, \mathbb{Z}) = 0$ by Proposition 8.19.

Corollary 8.21. Let $G \subseteq \mathbb{C}$ be a domain. Then every 1-cycle in $Z_1(G,\mathbb{Z})$ is homologous to a piecewise \mathcal{C}^1 -loop in G.

Proof. By Proposition 8.19 every 1-cycle in G is homologous to a loop in G. Every loop γ in G is homotopic in G to a piecewise \mathcal{C}^1 -loop γ' (Remark 3.15). In particular γ is homologous to γ' .

Proposition 8.22. Let $\Gamma \in Z_1(\mathbb{C}, \mathbb{Z})$.

(1) $W(\Gamma; u) \in \mathbb{Z}$.

(2) The map $\mathbb{C} \setminus \{\Gamma\} \to \mathbb{Z}, u \mapsto W(\Gamma; u)$ is locally constant.

(3) Let $G \subseteq \mathbb{C} \setminus \{\Gamma\}$ be an unbounded path component. Then $W(\Gamma; u) = 0$ for all $u \in G$.

Proof. (1),(3). Applying Corollary 8.21 for $G = \mathbb{C} \setminus \{u\}$ we may assume that Γ is a loop. Hence this follows from Proposition 8.7.

(2). It suffices to show that for all $u \in \mathbb{C} \setminus \{\Gamma\}$ there exists r > 0 with $B_r(u) \subset \mathbb{C} \setminus \{\Gamma\}$ such that $B_r(u) \to \mathbb{Z}, z \mapsto W(\Gamma; z)$ is constant. Using Corollary 8.21 for $G = \mathbb{C} \setminus \overline{B_r(u)}$ we may assume that Γ is a loop. Then we are again done by Proposition 8.7. \Box

Remark 8.23. Let $U \subseteq \mathbb{C}$ be open and $\Gamma \in Z_1(U,\mathbb{Z})$. Then $\{\Gamma\}$ is compact and hence $\{\Gamma\} \subseteq B_R(0)$ for some $R \in \mathbb{R}^{>0}$. Then Remark 8.22 (3) implies

 $\overline{\{u \in \mathbb{C} \setminus \{\Gamma\} ; W(\Gamma; u) \neq 0\}} \subseteq \overline{B_R(0)}.$

In particular, it is compact.

Example 8.24. Let $u \in \mathbb{C}$ and set $G := \mathbb{C} \setminus \{u\}$.

(1) As $W(\Gamma; u) = 0$ for all $\Gamma \in B_1(G, \mathbb{Z})$ (Proposition 8.16), we obtain a group homomorphism

$$W(\cdot; u): H_1(G, \mathbb{Z}) \to \mathbb{Z}, \qquad \Gamma \mapsto W(\Gamma; u).$$

This homomorphism is surjective because $n\partial B_1(u) \in Z_1(G,\mathbb{Z})$ has winding number n for all $n \in \mathbb{Z}$.

(2) Choose $z_0 \in G$. We obtain a surjective group homomorphisms

$$\pi_1(G, z_0) \xrightarrow{h} H_1(G, \mathbb{Z}) \xrightarrow{W(\cdot; u)} \mathbb{Z}.$$

By Proposition 8.5 the composition $\pi_1(G,\mathbb{Z}) \to \mathbb{Z}$ is an isomorphism of groups. Hence h and $W(\cdot; u)$ are isomorphisms. Hence

$$\pi_1(G, z_0) \cong H_1(G, \mathbb{Z}) \cong \mathbb{Z}.$$

Example 8.25. Let $U \subseteq \mathbb{C}$ be open. Let $\Gamma \in B_1(U,\mathbb{Z})$ (e.g., if U is simply connected and $\Gamma \in Z_1(U,\mathbb{C})$). Let $z_1, \ldots, z_m \in U \setminus \{\Gamma\}$ be distinct points and for $i = 1, \ldots, m$ choose $r_i \in \mathbb{R}^{>0}$ such that $\overline{B_{r_i}(z_i)} \subseteq U$. Assume that $\overline{B_{r_i}(z_i)} \cap \overline{B_{r_j}(z_j)} = \emptyset$ for $i \neq j$. Then Γ is homologous in $U^* := U \setminus \{z_1, \ldots, z_m\}$ to

$$\sum_{i=1}^{m} W(\Gamma; z_i) \partial B_{r_i}(z_i).$$

Proof. Set $n_i := W(\Gamma; z_i)$ and $\gamma_i = \partial B_{r_i}(z_i)$ for $i = 1, \ldots, m$. We have to show that $W(\Gamma; u) = \sum_{i=1}^m n_i W(\gamma_i; u)$ for all $u \in \mathbb{C} \setminus U^* = (\mathbb{C} \setminus U) \cup \{z_1, \ldots, z_m\}$.

For $u \in \mathbb{C} \setminus U$ we have $W(\Gamma; u) = 0$ by hypothesis and we have $W(\gamma_i; u) = 0$ for all *i* because *u* is outside every circle γ_i . Hence

$$W(\Gamma; u) = 0 = \sum_{n_i} W(\gamma_i; u).$$

If $u = z_k$ for some k, then $W(\gamma_i, z_k) = 1$ for i = k and 0 for $i \neq k$. Hence

$$W(\Gamma; z_k) = n_k = \sum_{i=1}^m n_i W(\gamma_i; z_k).$$

(E) Cauchy's theorem, homology version

Theorem 8.26 (Cauchy integral formula, homology version). Let $U \subseteq \mathbb{C}$ be open, let $\Gamma \in B_1(U,\mathbb{Z})$, and let $f: U \to \mathbb{C}$ be holomorphic. Let $z_0 \in U$ with $z_0 \notin \{\Gamma\}$. Then for all $n \in \mathbb{N}$ one has

(*)
$$W(\Gamma; z_0) f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_{\Gamma} \frac{f(z)}{(z - z_0)^{n+1}} dz.$$

Proof. (i). We may assume that n = 0: the general claim follows by differentiating under the integral sign (Proposition 4.10). Then the left hand side of (*) has the form $\frac{1}{2\pi i} \int_{\Gamma} \frac{f(z_0)}{z-z_0} dz$. Hence we have to prove:

$$h_0(z_0) := \int_{\Gamma} \frac{f(z) - f(z_0)}{z - z_0} \, dz = 0$$

for $z_0 \in U \setminus \{\Gamma\}$.

(ii). Define

$$g \colon U \times U \to \mathbb{C}, \qquad g(z, w) := \begin{cases} \frac{f(z) - f(w)}{z - w}, & z \neq w; \\ f'(z), & z = w. \end{cases}$$

Then g is continuous (Analysis 2). Moreover, $U \to \mathbb{C}$, $w \mapsto g(z, w)$ is continuous and holomorphic on $U \setminus \{z\}$. Thus it is holomorphic by Theorem 5.13. *(iii)*. Consider the continuous function

$$h_0: U \to \mathbb{C}, \qquad h_0(w) := \int_{\Gamma} g(z, w) \, dz.$$

It suffices to show that $h_0 = 0$.

We first claim that h_0 is holomorphic. This is a local question. Hence choose for all $z_0 \in U$ a disc $B_r(z_0) \subseteq U$ and let γ be a piecewise \mathcal{C}^1 -loop in $B_r(z_0)$. Then

$$\int_{\gamma} h_0(w) \, dw = \int_{\gamma} \int_{\Gamma} g(z, w) \, dz \, dw \stackrel{\text{Fubini}}{=} \int_{\Gamma} \int_{\gamma} g(z, w) \, dw \, dz \stackrel{(ii)}{=} 0$$

because $w \mapsto g(z, w)$ is holomorphic. Hence h_0 is holomorphic on $B_r(z_0)$ by Corollary 5.12.

(*iv*). Extend h_0 to an entire function: Let $V := \{ z \in \mathbb{C} \setminus \{\Gamma\} ; W(\Gamma; z) = 0 \}$. As $\Gamma \in B_1(U, \mathbb{Z})$, we have $U \cup V = \mathbb{C}$. Define

$$h_1: V \to \mathbb{C}, \qquad h_1(w) := \int_{\Gamma} \frac{f(z)}{z - w} \, dz.$$

This is a holomorphic function by Lemma 5.7. For $w \in U \cap V$ we have

$$h_0(w) = \int_{\Gamma} \frac{f(z)}{z - w} dz - f(w) 2\pi i W(\Gamma; w) = h_1(w).$$

Hence h_0 can be extended to an entire function $h: \mathbb{C} \to \mathbb{C}$ by setting

$$h(z) := \begin{cases} h_0(z), & \text{for } z \in U; \\ h_1(z), & \text{for } z \in V. \end{cases}$$

(v). Show h = 0: For all w in the unbounded path component of $\mathbb{C} \setminus \{\Gamma\}$ we have $W(\Gamma; w) = 0$ (Remark 8.22). Hence there exists $C \in \mathbb{R}^{\geq 0}$ depending only on Γ and $\|f\|_{\Gamma}^{-7}$ such that we have for large |w|:

$$|h(w)| = |h_1(w)| \le C \| \frac{1}{z - w} \|_{\Gamma} \xrightarrow{|w| \to \infty} 0.$$

Hence h = 0 by Liouville's theorem (Corollary 5.18).

⁷Here $||f||_{\Gamma} := \sup\{ |f(z)| ; z \in \{\Gamma\} \}.$

Theorem 8.27 (Cauchy's theorem, homology version). Let $U \subseteq \mathbb{C}$ be open and let $\Gamma \in Z_1(U,\mathbb{Z})$ be a 1-cycle in U. Then the following assertions are equivalent. (i) $\Gamma \in B_1(U,\mathbb{Z})$ (i.e., Γ is nullhomologous in U).

(ii) For all holomorphic functions $f: U \to \mathbb{C}$ one has

$$\int_{\Gamma} f \, dz = 0.$$

(iii) For all $n \geq 1$ and all closed \mathbb{R}^n -valued 1-forms ω on U one has

$$\int_{\Gamma} \omega = 0.$$

Proof. We will only show (und later use) the equivalence of (i) and (ii). "(ii) \Rightarrow (i)": For all $u \in \mathbb{C} \setminus U$ we have

$$W(\Gamma; u) = \int_{\Gamma} \frac{1}{z - u} dz \stackrel{(ii)}{=} 0$$

"(i) \Rightarrow (ii)": Let $f: U \to \mathbb{C}$ be holomorphic. Let $a \in U \setminus \{\Gamma\}$. Then $F: U \to \mathbb{C}$, F(z) = (z-a)f(z) is holomorphic with F(a) = 0. Hence by Theorem 8.26 we have

$$0 = W(\Gamma; a)F(a) = \frac{1}{2\pi i} \int_{\Gamma} \frac{F(z)}{z-a} dz = \frac{1}{2\pi i} \int_{\Gamma} f(z) dz.$$

Corollary 8.28. Let $U \subseteq \mathbb{C}$ be open, $f: U \to \mathbb{C}$ holomorphic, and let $\Gamma, \Gamma' \in C_1(U, \mathbb{Z})$ be 1-chains. If Γ and Γ' are homologous, then

$$\int_{\Gamma} f(z) \, dz = \int_{\Gamma'} f(z) \, dz.$$

Remark 8.29 (Poincaré duality). Let $U \subseteq \mathbb{C}$ be open. Set

 $H^1_{\mathrm{DR}}(U,\mathbb{C}) := \{\mathbb{C}\text{-valued closed 1-forms on } U\}/\{\mathbb{C}\text{-valued exact } \mathcal{C}^1 \text{ 1-forms on } U\}.$

Define $H_1(U, \mathbb{C})$ as homology classes of cycles which are \mathbb{C} -linear combinations of paths. Then Theorem 2.28 and Theorem 8.27 show that the bilinear form

$$H_1(U,\mathbb{C}) \times H^1_{\mathrm{DR}}(U,\mathbb{C}) \to \mathbb{C}, \qquad (\Gamma,\omega) \mapsto \int_{\Gamma} \omega$$

is well-defined and non-degenerate. In particular we have an injective C-linear map

(8.29.1)
$$H^1_{\mathrm{DR}}(U,\mathbb{C}) \to \mathrm{Hom}_{\mathbb{C}}(H_1(U,\mathbb{C}),\mathbb{C}), \qquad \omega \mapsto (\Gamma \mapsto \int_{\Gamma} \omega).$$

Note that these spaces are not necessarily finite-dimensional (consider the example $U := \mathbb{C} \setminus \mathbb{Z}$).

One can show that (8.29.1) is an isomorphism (e.g., W. Fulton: Algebraic Topology, A first Course, Springer (1995), Theorem 15.11).

9 Isolated singularities and meromorphic functions

(A) Laurent series

Definition 9.1. Let $z_0 \in \mathbb{C}$. A Laurent series in z_0 is a series of the form

(*)
$$\sum_{n=-\infty}^{\infty} a_n (z-z_0)^n,$$

more precisely, it is a pair of two series

$$\sum_{n=0}^{\infty} a_n (z-z_0)^n \quad \text{called regular part (German: Nebenteil)}$$
$$\sum_{n=-1}^{-\infty} a_n (z-z_0)^n := \sum_{n=1}^{\infty} a_{-n} (z-z_0)^{-n} \quad \text{called principal part (German: Hauptteil)}.$$

Let $A \subseteq \mathbb{C}$ be a subset. If these two series converge absolutely for $z \in A$ (resp. converges locally uniformly in z on A) we say that (*) converges absolutely (resp. converges locally uniformly) on A. If that is the case, we also denote by $\sum_{n=-\infty}^{\infty} a_n(z-z_0)^n$ the sum $\sum_{n=0}^{\infty} a_n(z-z_0)^n + \sum_{n=-1}^{-\infty} a_n(z-z_0)^n$.

Proposition 9.2. Let $z_0 \in \mathbb{C}$, let $0 \leq r < R \leq \infty$, and let $A := \{z \in \mathbb{C} ; r < |z-z_0| < R\}$ be the annulus centered at z_0 with inner radius r and outer radius R. Let $f : A \to \mathbb{C}$ be a holomorphic function. Then f has a Laurent series expansion

$$f(z) = \sum_{n = -\infty}^{\infty} a_n (z - z_0)^n$$

which converges absolutely and locally uniformly on A. For all $\rho \in \mathbb{R}$ with $r < \rho < R$ and for all $n \in \mathbb{Z}$ we have

(9.2.1)
$$a_n = \frac{1}{2\pi i} \int_{\partial B_\rho(z_0)} \frac{f(z)}{(z-z_0)^{n+1}} dz$$

and the Cauchy inequalities

(9.2.2)
$$|a_n| \le \rho^{-n} ||f||_{\partial B_\rho(z_0)}$$

We will see: Regular part converges on $\{z \in \mathbb{C} ; |z - z_0| < R\}$, and the principal part converges on $\{z \in \mathbb{C} ; |z - z_0| > r\}$.

Proof. We may assume that $z_0 = 0$. Choose r' and R' such that r < r' < R' < R. Then the loops $\partial B_{r'}(0)$ and $\partial B_{R'}(0)$ are homologous in A, hence $\Gamma := \partial B_{R'}(0) - \partial B_{r'}(0) \in$ $B_1(A, \mathbb{Z})$. As $z \mapsto \frac{f(z)}{z^{n+1}}$ is holomorphic in A, Cauchy's theorem shows that (9.2.1) is independent of ρ . Moreover, Theorem 8.26 gives for w with r' < |w| < R':

$$f(w) = W(\Gamma; w)f(w) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{z - w} dz$$

$$(*) \qquad \qquad = \frac{1}{2\pi i} \int_{\partial B_{R'}(0)} \frac{f(z)}{z - w} dz \qquad \underbrace{-\frac{1}{2\pi i} \int_{\partial B_{r'}(0)} \frac{f(z)}{z - w} dz}_{=:f_{\text{reg}}(w)} \qquad \underbrace{-\frac{1}{2\pi i} \int_{\partial B_{r'}(0)} \frac{f(z)}{z - w} dz}_{=:f_{\text{princ}}(w)}$$

By homotopy invariance f_{reg} is independent of R' as long as |w| < R' < R. Therefore f_{reg} can be extended holomorphically to $B_R(0)$. The same argument shows that f_{princ} can be extended holomorphically to $\{w \in \mathbb{C} ; |w| > r\}$.

By the Cauchy formula for discs (Theorem 5.8) we get $f_{\text{reg}}(w) = \sum_{n=0}^{\infty} a_n w^n$ with a_n as in (9.2.1) for $n \ge 0$.

To handle $f_{\text{princ}}(w)$ we choose r' with r < r' < |w| and write

$$z - w = -w(1 - \frac{z}{w})$$

For $z \in \partial B_{r'}(0)$ we have |z/w| < 1, so the geometric series

$$\frac{1}{z-w} = -\frac{1}{w}\frac{1}{1-z/w} = -\frac{1}{w}\sum_{n=0}^{\infty} \left(\frac{z}{w}\right)^n = -\sum_{n=-1}^{-\infty} \frac{w^n}{z^{n+1}}$$

converges. We can exchange the order of summation and integration and obtain

$$f_{\text{princ}}(w) = \sum_{n=-1}^{\infty} \underbrace{\left(\frac{1}{2\pi i} \int\limits_{\partial B_{r'}(0)} \frac{f(z)}{z^{n+1}} dz\right)}_{=:a_n} w^n.$$

Finally, (9.2.2) follows from (9.2.1) by using the standard estimate of path integrals. \Box Example 9.3. Consider the holomorphic function

$$f: \mathbb{C} \setminus \{0, 1\} \to \mathbb{C}, \qquad f(z) = \frac{1}{z(z-1)}.$$

(1) The Laurent series expansion in 0 on the annulus $\{z \in \mathbb{C} ; 0 < |z| < 1\}$ is given by

$$f(z) = \frac{1}{z-1} - \frac{1}{z} = \underbrace{-\frac{1}{z}}_{\text{principal part}} + \underbrace{(-\sum_{n=0}^{\infty} z^n)}_{\text{regular part}}.$$

(2) On the annulus $\{z \in \mathbb{C} ; |z| > 1\}$ the Laurent series expansion in 0 is given by

$$f(z) = \frac{1}{z} \frac{1}{z} \frac{1}{1 - 1/z} \stackrel{|1/z| < 1}{=} \frac{1}{z^2} \sum_{n=0}^{\infty} \left(\frac{1}{z}\right)^n = \sum_{n=-2}^{-\infty} z^n.$$

(B) Isolated singularities

Definition 9.4. Let $U \subseteq \mathbb{C}$ be open, $z_0 \in U$. If $f: U \setminus \{z_0\} \to \mathbb{C}$ is holomorphic, then z_0 is called *isolated singularity of* f.

Theorem and Definition 9.5. Let $U \subseteq \mathbb{C}$ be open, $z_0 \in U$ and let $f: U \setminus \{z_0\} \to \mathbb{C}$ be holomorphic. Let $r \in \mathbb{R}^{>0}$ with $B_r(z_0) \subseteq U$, and let

(*)
$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z - z_0)^n$$

be the Laurent series expansion of f on the annulus $B_r(z_0) \setminus \{z_0\}$. Then exactly one of the following cases occur.

- (a) The following equivalent conditions are satisfied.
 - (i) $a_n = 0$ for all n < 0, i.e., the principal part of (*) is zero.
 - (ii) There exists a (necessarily unique) holomorphic function $\tilde{f}: U \to \mathbb{C}$ such that $\tilde{f}_{|U \setminus \{z_0\}} = f$.
 - (iii) f is bounded in some neighborhood of z_0 .

In this case z_0 is called a removable singularity of f.

- (b) The following equivalent conditions are satisfied.
 - (i) There exists $k \in \mathbb{N}$ such that $a_{-k} \neq 0$ and $a_n = 0$ for all n < -k.
 - (ii) There exists $k \in \mathbb{N}$ and a holomorphic function $h: U \to \mathbb{C}$ with $h(z_0) \neq 0$ such that

$$f(z) = (z - z_0)^{-k} h(z) \qquad \text{for all } z \in U \setminus \{z_0\}.$$

(iii) One has $\lim_{z\to z_0} |f(z)| = \infty$.

Moreover the integers k in (i) and in (ii) are equal.

In this case z_0 is called a pole of f. The integer $k \in \mathbb{N}$ is called the order of the pole z_0 .

- (c) The following equivalent conditions are satisfied (Casorati-Weierstraß)
 - (i) There exist infinitely many $n \in \mathbb{Z}^{<0}$ with $a_n \neq 0$.
 - (ii) For every $w_0 \in \mathbb{C}$ there exists a sequence $(z_n)_n$ in $U \setminus \{z_0\}$ such that $\lim_n z_n = z_0$ and $\lim_n f(z_n) = w_0$.
 - In this case z_0 is called an essential singularity of f.

Proof. We may assume that $z_0 = 0$. Clearly exactly one of the conditions (a), (b), or (c) is satisfied.

(a). "(i) \Leftrightarrow (ii)": Clear, as holomorphic functions are analytic.

- "(ii) \Leftrightarrow (iii)": Riemann extension theorem (Theorem 5.13).
- (b). "(i) \Leftrightarrow (ii)": Condition (i) means that the Laurent series expansion is of the form

$$f(z) = a_{-k}z^{-k} + a_{-k+1}z^{-k+1} + \dots + a_{-1}z^{-1} + \sum_{n=0}^{\infty} a_n z^n$$

with $a_{-k} \neq 0$. Hence (i) and (ii) are equivalent. "(ii) \Rightarrow (iii)": Clear. "(iii) \Rightarrow (ii)": We have to show that 0 is a removable singularity of $z \mapsto z^k f(z)$. For this we may make U smaller and can assume that $f(z) \neq 0$ for $z \in U \setminus \{0\}$. Then $g := 1/f : U \setminus \{0\} \rightarrow \mathbb{C}$ is holomorphic and nonzero, and $\lim_{z\to 0} |f(z)| = \infty$ implies $\lim_{z\to 0} |g(z)| = 0$. By the Riemann extension theorem, g can be extended to a holomorphic function on U, again called g. After again making U smaller, we may assume that the power series expansion $g(z) = \sum_{n=0}^{\infty} b_n z^n$ of g in 0 converges on U. Set $k := \inf\{n \in \mathbb{N}_0; b_n \neq 0\}$. Then

$$g(z) = z^k \tilde{h}(z),$$

where \tilde{h} is holomorphic on U and $\tilde{h}(0) \neq 0$. Thus \tilde{h} is nonzero on U and hence $h := 1/\tilde{h}$ is holomorphic on U with $h(z) = z^k f(z)$.

(c). "(ii) \Rightarrow (i)": If (ii) is satisfied, z_0 cannot be a removable singularity or a pole as we have already shown. Hence (i) has to be satisfied.

"(i) \Rightarrow (ii)": Assume that (ii) does not hold, i.e., there exist $w_0 \in \mathbb{C}$ and $\rho, \varepsilon > 0$ such that $|f(z) - w_0| \ge \varepsilon$ for all z with $0 < |z| < \rho$. The function

$$g: \{ z \in \mathbb{C} ; 0 < |z| < \rho \} \to \mathbb{C}, \qquad g(z) := \frac{1}{f(z) - w_0}$$

is thus holomorphic and bounded by $1/\varepsilon$. By the Riemann extension theorem, g can be extended holomorphically to $B_{\rho}(0)$. But then $f = w_0 + 1/g$ has a removable singularity (if $g(0) \neq 0$) or a pole (if g(0) = 0) at 0.

Definition and Remark 9.6. Let $U \subseteq \mathbb{C}$ be open, $z_0 \in U$. Let $f: U \setminus \{z_0\} \to \mathbb{C}$ be holomorphic and let $f(z) = \sum_{n=-\infty}^{\infty} a_n (z-z_0)^n$ be the Laurent series expansion of f in z_0 . Assume that z_0 is a removable singularity or a pole of f. Then

$$\operatorname{ord}_{z_0}(f) := \inf\{k \in \mathbb{Z} ; a_k \neq 0\} \in \mathbb{Z} \cup \{\infty\}$$

is called the order of f in z_0 . (1) Assume $\operatorname{ord}_{z_0}(f) < \infty$. Then

$$\operatorname{ord}_{z_0}(f) = \sup\{l \in \mathbb{Z} ; z \mapsto \frac{f(z)}{(z-z_0)^l} \text{ has a removable singularity in } z_0\}$$
$$= \text{unique integer } k \in \mathbb{Z} \text{ such that } \lim_{z \to z_0} \frac{f(z)}{(z-z_0)^k} \text{ exists in } \mathbb{C} \setminus \{0\}.$$

(2) f has a pole in z_0 if and only if $\operatorname{ord}_{z_0}(f) < 0$ and in this case the order of the pole is $-\operatorname{ord}_{z_0}(f)$.

Example 9.7.

(1) The holomorphic function $\mathbb{C}^{\times} \to \mathbb{C}$, $z \mapsto \exp(\frac{1}{z})$ has an essential singularity in 0: Its Laurent series expansion in 0 is

$$\sum_{n=-\infty}^{0} \frac{z^n}{(-n)!}$$

(2) Let log: $G := \mathbb{C} \setminus \{ z \in \mathbb{R} ; z < 0 \} \to \mathbb{C}$ be the principal branch of the logarithm on G (Definition 6.6). Then its power series expansion at $z_0 = 1$ is given by

$$\log(z) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} (z-1)^n$$

for $z \in B_1(1)$. Thus $G \setminus \{1\} \to \mathbb{C}, z \mapsto \frac{\log(z)}{z-1}$ has a removable singularity at 1.

(C) Meromorphic functions

Definition 9.8. Let $U \subseteq \mathbb{C}$ be open. A meromorphic function f on U is a holomorphic function $f: U \setminus P(f) \to \mathbb{C}$, where $P(f) \subseteq U$ is a closed subset such that every $z \in P(f)$ is a pole of f.

We consider a meromorphic function f on U as a map $f: U \to \widehat{\mathbb{C}} := \mathbb{C} \cup \{\infty\}$ by setting $f(z) := \infty$ for $z \in P(f)$.

We denote by $\mathcal{M}(U)$ the set of meromorphic functions on U.

Remark 9.9. Let $U \subseteq \mathbb{C}$ be open.

- (1) Every holomorphic function f on U is meromorphic on U (then $P(f) = \emptyset$).
- (2) Let f be meromorphic on U. Then P(f) is discrete and closed in U.

Proof. If z is a pole of f, then there exists $z \in W \subseteq U$ open such that $f_{|W \setminus \{z\}}$ is holomorphic (by definition of "pole"). Thus $P(f) \cap W = \{z\}$ which implies $\{z\}$ is open in P(f). Therefore P(f) is discrete.

- (3) Let $(U_i)_{i \in I}$ be an open covering of U, and let $f: U \to \widehat{\mathbb{C}}$ be a map. Then f is meromorphic if and only if $f_{|U_i|}$ is meromorphic for all $i \in I$ (use that a subset $S \subseteq U$ is closed in U if and only if $S \cap U_i$ is closed in U_i for all $i \in I$).
- (4) Let f, g ∈ M(U). Define f + g as follows: Note that P(f) ∪ P(g) is again closed in U and discrete⁸. For z ∈ U \ (P(f) ∪ P(g)) we define (f + g)(z) := f(z) + g(z). Looking at the Laurent series expansion one sees that for z₀ ∈ P(f) ∪ P(g) (a) either z₀ is a removable singularity of f + g. Then set

$$(f+g)(z_0) := \lim_{z \to z_0} (f+g)(z).$$

(b) or z_0 is a pole of f + g. Then set $(f + g)(z_0) := \infty$.

In the same way, one defines the product fg. These definitions make $\mathscr{M}(U)$ into a \mathbb{C} -algebra.

⁸X topological space, $Y, Z \subseteq X$ discrete and closed. Then $Y \cup Z$ is discrete and closed in X. Indeed, $Y \cup Z$ is clearly closed. Let $x \in Y \cup Z$. We have to show that there exists $x \in W \subseteq X$ open such that $W \cap (Y \cup Z) = \{x\}$. After possible switching Y and Z we may assume that $x \in Y$. Let $x \in U \subseteq X$ be open such that $U \cap Y = \{x\}$. If $x \in Z$ then there exist $x \in V \subseteq X$ open such that $V \cap Z = \{x\}$ and we may take $W := U \cap V$. If $x \notin Z$, we may take $W := U \cap (X \setminus Z)$ because $X \setminus Z$ is open in X.

Note that the union of two discrete subspaces is not necessarily discrete: $\{1/n ; n \in \mathbb{N}\}$ and $\{0\}$ are both discrete subspaces of \mathbb{R} , but their union is not discrete.

Proposition 9.10. Let $U \subseteq \mathbb{C}$ be open. Then a function f is meromorphic on U if and only if for all $z \in U$ there exists $z_0 \in B_r(z_0) \subseteq U$ open such that f = g/h, where $g,h: B_r(z_0) \to \mathbb{C}$ are holomorphic with $h \neq 0$ (but of course $h(z_0) = 0$ is possible). In this case

(9.10.1)
$$\operatorname{ord}_{z}(f) = \operatorname{ord}_{z}(g) - \operatorname{ord}_{z}(h) \quad \text{for all } z \in B_{r}(z_{0})$$

One can show that there exist even globally holomorphic functions $g, h: U \to \mathbb{C}$ such that f = g/h.

Proof. Let f be meromorphic on U. For all $z_0 \in U$ we may choose $B_r(z_0)$ such that $f(z) = \sum_{n=k}^{\infty} a_n(z-z_0)^n$ on $B_r(z_0) \setminus \{z_0\}$, where $k = \operatorname{ord}_{z_0}(f) \in \mathbb{Z}$. If $k \ge 0$, we set g = f and h = 1 on $B_r(z_0)$. If k < 0, set $g := \sum_{n=0}^{\infty} a_{n-k}(z-z_0)^n$ and $h = (z-z_0)^{-k}$. Conversely let $z_0 \in U$ and let g and h as above. Set $d := \operatorname{ord}_{z_0}(g)$ and $e := \operatorname{ord}_{z_0}(h)$. Then $g(z) = (z-z_0)^d \tilde{g}(z)$ and $h(z) = (z-z_0)^e \tilde{h}(z)$, where (for some r > 0)

$$\tilde{g}, h: B_r(z_0) \to \mathbb{C}$$

holomorphic with $\tilde{g}(z_0) \neq 0 \neq \tilde{h}(z_0)$. By shrinking r we may assume $\tilde{g}(z) \neq 0 \neq h(z)$ for all $z \in B_r(z_0)$. Hence $f(z) = (z - z_0)^{d-e} \tilde{f}(z)$, where $\tilde{f} := \tilde{g}/\tilde{h}$ is holomorphic with $\tilde{f}(z_0) \neq 0$. Therefore f has an isolated singularity of order d - e at z_0 and thus is meromorphic on $B_r(z_0)$. As z_0 was arbitrary, this shows that f is meromorphic on U(Remark 9.9 (3)).

Example 9.11. The *tangens function* $\tan := \frac{\sin}{\cos}$ is a meromorphic function on \mathbb{C} . For $z \in \mathbb{C}$ we have (see Exercise 23)

$$\operatorname{ord}_{z}(\sin) \neq 0 \Leftrightarrow \sin(z) = 0 \quad \Leftrightarrow \quad z \in \pi \mathbb{Z} := \{ \pi k \; ; \; k \in \mathbb{Z} \},\\ \operatorname{ord}_{z}(\cos) \neq 0 \Leftrightarrow \cos(z) = 0 \quad \Leftrightarrow \quad z \in \frac{\pi}{2} + \pi \mathbb{Z} := \{ \frac{\pi}{2} + \pi k \; ; \; k \in \mathbb{Z} \}.$$

For $z \in \pi \mathbb{Z}$ we have $\sin'(z) = \cos(z) \neq 0$ and thus $\operatorname{ord}_z(\sin) = 1$. Analogously $\operatorname{ord}_z(\cos) = 1$ for $z \in \frac{\pi}{2} + \pi \mathbb{Z}$. Therefore:

$$\operatorname{ord}_{z}(\operatorname{tan}) = \begin{cases} 1, & z \in \pi \mathbb{Z}; \\ -1, & z \in \frac{\pi}{2} + \pi \mathbb{Z}; \\ 0, & \text{otherwise.} \end{cases}$$

(D) Meromorphic functions and the Riemann sphere

We add ∞ to \mathbb{C} and obtain a "complex manifold". We first define $\widehat{\mathbb{C}}$ as topological space.

Definition and Remark 9.12. We define $\widehat{\mathbb{C}} := \mathbb{C} \cup \{\infty\}$, where ∞ is some element not contained in \mathbb{C} .

Topology of $\widehat{\mathbb{C}}$: A subset U of $\widehat{\mathbb{C}}$ is called open if either $U \subseteq \mathbb{C}$ and U is open in \mathbb{C} or if $\infty \in U$ and $\widehat{\mathbb{C}} \setminus U$ is a compact subspace of \mathbb{C} . It is easy to check that this defines a topology on $\widehat{\mathbb{C}}$.

For a sequence $(z_n)_n$ of complex numbers we then have:

$$\lim_{n \to \infty} z_n = \infty \quad \text{in } \widehat{\mathbb{C}}$$

$$\Leftrightarrow \forall K \subseteq \mathbb{C} \text{ compact} : \{ n \; ; \; z_n \in K \} \text{ is finite}$$

$$\Leftrightarrow \forall R \in \mathbb{R}^{>0} : \{ n \; ; \; z_n \in \overline{B_R(0)} \} \text{ is finite}$$

$$\Leftrightarrow \lim_{n \to \infty} |z_n| = \infty.$$

Example 9.13. The function

$$i: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}, \quad z \mapsto 1/z := \begin{cases} 1/z, & z \neq 0, \infty; \\ \infty, & z = 0; \\ 0, & z = \infty \end{cases}$$

is a homeomorphism with $i^{-1} = i$.

We imagine $\widehat{\mathbb{C}}$ as a sphere:

Remark 9.14. Consider \mathbb{R}^3 with coordinates x_1, x_2 , and x_3 , and identify \mathbb{C} with the (x_1, x_2) -plane by setting $\mathbb{C} \ni z = x_1 + ix_2$. Let

$$S^2 := \{ (x_1, x_2, x_3) \in \mathbb{R}^3 ; x_1^2 + x_2^2 + x_3^2 = 1 \}$$

be the 2-sphere, let $N := (0, 0, 1) \in S^2$ be its "north pole", and let $\varphi \colon S^2 \setminus \{N\} \to \mathbb{C}$ be the stereographic projection, i.e. $\varphi(x)$ is the point at which the line connecting N and x intersects \mathbb{C} . We obtain a homeomorphism

$$\varphi \colon S^2 \setminus \{N\} \to \mathbb{C}, \qquad (x_1, x_2, x_3) \mapsto \frac{1}{1 - x_3} (x_1 + ix_2)$$

whose inverse is given by $x + iy \mapsto (x^2 + y^2 + 1)^{-1}(2x, 2y, x^2 + y^2 - 1)$. We extend φ to a bijection

$$\hat{\varphi} \colon S^2 \to \widehat{\mathbb{C}}$$

by setting $\hat{\varphi}(N) := \infty$. Then it is easy to check that $\hat{\varphi}$ is a homeomorphism. In particular we see that $\widehat{\mathbb{C}}$ is compact and path-connected (because S^2 has these properties). In fact, it is even simply connected (Exercise 40).

We consider $\widehat{\mathbb{C}}$ as "complex manifold of complex dimension 1 with an atlas consisting of the two charts"

$$\begin{split} \Phi_0 \colon U_0 &:= \widehat{\mathbb{C}} \setminus \{\infty\} \xrightarrow{\sim} \mathbb{C}, \qquad \Phi_0(z) = z; \\ \Phi_1 \colon U_1 &:= \widehat{\mathbb{C}} \setminus \{0\} \xrightarrow{\sim} \mathbb{C}, \qquad \Phi_1(z) = 1/z. \end{split}$$

More precisely:

Definition 9.15. Let $U \subseteq \widehat{\mathbb{C}}$ be open. A continuous map $f: U \to \widehat{\mathbb{C}}$ is called *holomorphic* if for all i, j = 0, 1 the compositions

$$\underbrace{\Phi_i(U \cap U_i \cap f^{-1}(U_j))}_{\subseteq \mathbb{C} \text{ open}} \xrightarrow{\Phi_i^{-1}} U \cap U_i \cap f^{-1}(U_j) \xrightarrow{f} U_j \xrightarrow{\Phi_j} \mathbb{C}$$

are holomorphic.

Let $V \subseteq \widehat{\mathbb{C}}$ be open. A bijective map $f: U \to V$ is called *biholomorphic* if $f: U \to \widehat{\mathbb{C}}$ and $f^{-1}: V \to \widehat{\mathbb{C}}$ are holomorphic.

Example 9.16. The map $\widehat{\mathbb{C}} \to \widehat{\mathbb{C}}, z \mapsto 1/z$ is biholomorphic.

Proposition 9.17. Let $G \subseteq \widehat{\mathbb{C}}$ be open and connected. Choose $V_0, V_1 \subseteq G$ open and connected such that $G = V_0 \cup V_1$ with $\infty \notin V_0$ and $0 \notin V_1$. Let $f: G \to \widehat{\mathbb{C}}$ be continuous such that there exists $z \in G$ with $f(z) \neq \infty$.

Then f is a holomorphic map if and only if the two maps

$$f_0 \colon V_0 \to \widehat{\mathbb{C}}, \qquad z \mapsto f(z),$$
$$f_1 \colon \{ \frac{1}{z} \in \mathbb{C} \; ; \; z \in V_1 \} \to \widehat{\mathbb{C}}, \qquad w \mapsto f(\frac{1}{w})$$

are meromorphic.

Proof. By definition, f is holomorphic if and only if f_i is holomorphic (in the sense of Definition 9.15). Thus it suffices to show the following proposition.

Proposition 9.18. Let $G \subset \mathbb{C}$ be open and connected, $f: G \to \widehat{\mathbb{C}}$ be a map such that there exists $z \in G$ with $f(z) \neq \infty$. Then the following assertions are equivalent: (i) f is meromorphic.

(ii) f is a holomorphic map in the sense of Definition 9.15.

Proof. "(i) \Rightarrow (ii)". Clearly, $f_{|U \setminus P(f)}$ is holomorphic. Let $z_0 \in P(f)$. Then Theorem 9.5 (b) shows $\lim_{z \to z_0} f(z) = \infty$. Hence f is at least continuous in z_0 . Moreover, there exists $z_0 \in W \subseteq U$ open such that $f(z) \notin \{0, \infty\}$ for all $z \in W$. Then $g: W \setminus \{z_0\} \to \mathbb{C}, g(z) = 1/f(z)$ is holomorphic with $\lim_{z \to z_0} g(z) = 0$. Hence g can be extended holomorphically to z_0 . This shows that f is a holomorphic map on W in the sense of Definition 9.15.

"(*ii*) \Rightarrow (*i*)". Set $P(f) := \{z \in U ; f(z) = \infty\}$. Then $f_{|U \setminus P(f)} : U \setminus P(f) \rightarrow \mathbb{C}$ is holomorphic by Definition 9.15. As f is continuous, P(f) is closed in U and $\lim_{z \to z_0} f(z) = \infty$ for all $z_0 \in P(f)$. Hence it remains to show that P(f) is discrete in U (\Rightarrow the points of P(f) are poles $\Rightarrow f$ is meromorphic).

Choose $z_0 \in W \subseteq U$ open such that $f(z) \neq 0$ for all $z \in W$. Then $g: W \to \mathbb{C}$, $z \mapsto 1/f(z)$ is holomorphic and $P(f) \cap W = \{z \in W ; g(z) = 0\}$. Now $f \neq \infty$ implies $g \neq 0$. and hence $\{z \in W ; g(z) = 0\}$ is discrete by Proposition 5.23.

10 Calculus of Residues

(A) The residue theorem

Remark 10.1. Let $U \subseteq \mathbb{C}$ be open, $z_0 \in U$, $f: U \setminus \{z_0\}$ holomorphic. Let

$$f(z) = \sum_{n = -\infty}^{\infty} a_n (z - z_0)^n$$

be its Laurent series expansion at z_0 . Choose $r \in \mathbb{R}^{>0}$ such that $\overline{B_r(z_0)} \subseteq U$. Then the Laurent series converges on some $B_R(z_0)$ for some R > r and we have

$$\int_{\partial B_r(z_0)} f(z) dz = \sum_{n=-\infty}^{\infty} a_n \int_{\partial B_r(z_0)} (z - z_0)^n dz,$$

where we may interchange sum and integral because the series converges locally uniformly. But $(z - z_0)^n$ has a primitive on $U \setminus \{z_0\}$ for $n \neq -1$, namely $\frac{1}{n+1}(z - z_0)^{n+1}$. Therefore $\int_{\gamma} (z - z_0)^n dz = 0$ for every loop γ in $U \setminus \{z_0\}$ and for $n \neq -1$. Hence we see that

$$\int_{\partial B_r(z_0)} f(z) \, dz = a_{-1} \int_{\partial B_r(z_0)} (z - z_0)^{-1} \, dz = 2\pi i a_{-1}$$

This also follows from (9.2.1).

Definition 10.2. Let $U \subseteq \mathbb{C}$ be open, $z_0 \in U$, $f: U \setminus \{z_0\} \to \mathbb{C}$ holomorphic with Laurent series $f(z) = \sum_{n=-\infty}^{\infty} a_n (z-z_0)^n$. Then

$$\operatorname{res}_{z_0}(f) := a_{-1} \stackrel{(9.2.1)}{=} \frac{1}{2\pi i} \int_{\partial B_r(z_0)} f(z) \, dz$$

is called the *residue of* f at z_0 . Here we choose $r \in \mathbb{R}^{>0}$ such that $\overline{B_r(z_0)} \subseteq U$.

For the following theorem we make the following remark. Let $U \subseteq \mathbb{C}$ be open, let $S \subseteq U$ be discrete and closed, and let Γ be a 1-cycle in U which is null-homologous in U (i.e. $W(\Gamma; u) = 0$ for all $u \in \mathbb{C} \setminus U$) such that $S \cap \{\Gamma\} = \emptyset$. Then there are only finitely many $z \in S$ with $W(\Gamma; z) \neq 0$. Indeed

$$I:=\overline{\{\,z\in\mathbb{C}\setminus\{\Gamma\}\,\,;\,\,W(\Gamma;z)\neq 0\,\}}$$

is compact (Remark 8.23) and contained in U because Γ is null-homologous in U (Exercise 34). As S is discrete and closed in $U, S \cap I$ is a closed and discrete subspace of I. Therefore it is a discrete and compact space and hence finite.

Theorem 10.3 (Residue theorem). Let $U \subseteq \mathbb{C}$ be open, let $S \subseteq U$ be discrete and closed, let $f: U \setminus S \to \mathbb{C}$ be holomorphic. Let Γ be a 1-cycle in U which is nullhomologous in U such that $S \cap \{\Gamma\} = \emptyset$. Then

$$\int_{\Gamma} f(z) dz = 2\pi i \sum_{z \in S} W(\Gamma; z) \operatorname{res}_{z}(f).$$

Recall that a 1-cycle in U is automatically null-homologous if U is simply connected.

Proof. Let $S' = \{z \in S ; W(\Gamma; z) \neq 0\}$. Example 8.25 above that Γ is homologous to $\sum_{z \in S'} W(\Gamma, z) \partial B_{\varepsilon}(z)$ with $\varepsilon > 0$ such that $\overline{B_{\varepsilon}(z)} \subseteq U$ and $\overline{B_{\varepsilon}(z)} \cap \overline{B_{\varepsilon}(z')} = \emptyset$ for $z, z' \in S'$ with $z \neq z'$. Hence

$$\int_{\Gamma} f(z) dz \stackrel{8.27}{=} \sum_{z \in S} W(\Gamma; z) \int_{\partial B_{\varepsilon}(z)} f(z) dz$$

$$\stackrel{10.2}{=} 2\pi i \sum_{z \in S} W(\Gamma; z) \operatorname{res}_{z}(f) \square$$

Remark 10.4. Let $U \subseteq \mathbb{C}$ be open, $z_0 \in U$, $f, g: U \setminus \{z_0\} \to \mathbb{C}$ be holomorphic,

$$f(z) = \sum_{n=-\infty}^{\infty} a_n (z - z_0)^n, \qquad g(z) = \sum_{n=-\infty}^{\infty} b_n (z - z_0)^n$$

their Laurent series expansions.

r

(1) For $a \in \mathbb{C}$ one has

$$\operatorname{es}_{z_0}(af+g) = a\operatorname{res}_{z_0}(f) + \operatorname{res}_{z_0}(g).$$

(2) Assume that f and g are meromorphic on U, i.e. there exist only finitely many r < 0 with $a_r \neq 0$ or $b_r \neq 0$. The Laurent series converge absolutely, we have by Cauchy's formula

(*)
$$f(z)g(z) = \sum_{n=-\infty}^{\infty} c_n (z-z_0)^n, \quad c_n = \sum_{\substack{k,l \in \mathbb{Z} \\ k+l=n}} a_k b_l,$$

where the sum is finite because of our assumption. In particular:

$$\operatorname{res}_{z_0}(fg) = \sum_{k+l=-1} a_k b_l.$$

(3) Assume that f has a pole of order 1 at z_0 and that g is holomorphic in z_0 (more precisely, g can be extended holomorphically into z_0). Then (2) shows

$$\operatorname{res}_{z_0}(fg) = a_{-1}b_0 = g(z_0)\operatorname{res}_{z_0}(f).$$

(4) Assume that f has a zero of order 1 in z_0 and that g is holomorphic in z_0 . Then the -1-st coefficient of the Laurent series of 1/f is $1/a_1 = 1/f'(z_0)$ by (*), hence by (3):

$$\operatorname{res}_{z_0} \frac{g}{f} = \frac{g(z_0)}{f'(z_0)}$$

Example 10.5. (1)

$$\operatorname{res}_{\pi/2} \tan(z) = \frac{\sin(\pi/2)}{\cos'(\pi/2)} = -1.$$

(2)

 $\frac{\cos(z)}{z^2} = \frac{1}{z^2} \left(1 - \frac{z^2}{2} + \dots \right) = \frac{1}{z^2} - \frac{1}{2} + \text{terms of higher order.}$

Hence $\operatorname{res}_0(\frac{\cos(z)}{z^2}) = 0.$

(B) Counting zeros

Proposition 10.6. Let $U \subseteq \mathbb{C}$ be open, $f: U \to \widehat{\mathbb{C}}$ meromorphic, $z_0 \in U$. If $\operatorname{ord}_{z_0}(f) < \infty$, then

$$\operatorname{ord}_{z_0}(f) = \operatorname{res}_{z_0} \frac{f'}{f}$$

Proof. Exercise

Proposition 10.7. Let $U \subseteq \mathbb{C}$ be open, $f: U \to \widehat{\mathbb{C}}$ meromorphic, set

$$Z(f) = \{ z \in \mathbb{C} ; f(z) = 0 \}, \qquad P(f) := \{ z \in \mathbb{C} ; f(z) = \infty \}.$$

Let Γ be a null-homologous cycle in U such that $\{\Gamma\} \cap (P(f) \cup Z(f)) = \emptyset$. Then

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{f'}{f} dz = \sum_{u \in U} W(\Gamma; u) \operatorname{ord}_u(f) = \sum_{u \in P(f) \cup Z(f)} W(\Gamma; u) \operatorname{ord}_u(f).$$

Note that $W(\Gamma; u) = 0$ for all but finitely many $u \in P(f) \cup Z(f)$ because $P(f) \cup Z(f)$ is discrete and closed in U (see the remark before the Residue theorem).

Proof. Residue theorem + Proposition 10.6.

(C) Limits and fibers

Definition 10.8. Let $G \subseteq \mathbb{C}$ be a domain, $f: G \to \widehat{\mathbb{C}}$ meromorphic. Assume that f is not constant. For $w \in \mathbb{C}$ we set

$$N_f(w) := \sum_{\substack{z \in G \\ f(z) = w}} \operatorname{ord}_z(f(z) - w) \in \mathbb{N}_0 \cup \{\infty\}.$$

In other words: $N_f(w)$ is the number of $z \in G$ with f(z) = w (w-places) with multiplicity.

Proposition 10.9. Let $G \subseteq \mathbb{C}$ be a domain, and let $(f_n)_n$ be a sequence of holomorphic functions $f_n: G \to \mathbb{C}$ that converges locally uniformly against $f: G \to \mathbb{C}$. Let $k \in \mathbb{N}_0$ and $w \in \mathbb{C}$ and assume that $N_{f_n}(w) \leq k$ for all $n \in \mathbb{N}$. Then either f = w constant or $N_f(w) \leq k$.

Proof. By Weierstraß' theorem of convergence (Theorem 5.14) we know that f is holomorphic. We may assume that w = 0 (replace f_n by $f_n - w$). Assume that $f \neq 0$ but there exist $z_1, \ldots, z_m \in G$ with $\sum_{i=1}^m \operatorname{ord}_{z_i}(f) > k$. The set $Z(f) := \{z \in G; f(z) = 0\}$ is discrete, hence there exist discs $D_i = B_{r_i}(z_i)$ such that $\overline{D_i} \subseteq G$ and $\overline{D_i} \cap Z(f) = \{z_i\}$ for all i. Now choose $\varepsilon > 0$ such that $\varepsilon < |f(z)|$ for all z in the compact set $\bigcup_{i=1}^m \partial D_i$. As $(f_n)_n$ converges uniformly on compact sets towards f, there exists $n \in \mathbb{N}$ such that

$$|f(z) - f_n(z)| < \varepsilon < |f(z)|$$

for all $z \in \bigcup_{i=1}^{m} \partial D_i$. By Rouché's theorem, f and f_n have the same number of zeros in $\bigcup_{i=1}^{m} D_i$ (with multiplicity). Contradiction.

Corollary 10.10. Let $G \subseteq \mathbb{C}$ be a domain, and let $(f_n)_n$ be a sequence of holomorphic functions $f_n: G \to \mathbb{C}$ that converges locally uniformly against $f: G \to \mathbb{C}$. If all f_n are injective, then f is either injective or constant.

Proof. 1st proof. This follows from Proposition 10.9 because

f is injective $\Leftrightarrow N_f(w) \leq 1$ for all $w \in \mathbb{C}$.

Here " \Leftarrow " is clear. Conversely, let f be injective and assume that there exists $w \in \mathbb{C}$ such that $N_f(w) > 1$. Then $w = f(z_0)$ for some $z_0 \in G$ such that $\operatorname{ord}_{z_0}(f - f(z_0)) > 1$. By restricting to an open nieghborhood of z_0 and by precomposing with a biholomorphic map (under both operations f stays injective), we may assume that $f(z) = f(z_0) + z^r$ with $r = \operatorname{ord}_{z_0}(f - f(z_0)) > 1$ (Theorem 7.3). But this map is clearly not injective. Contradiction.

2nd proof. A different argument goes as follows: f_n is injective if and only if for all $a \in G$ the holomorphic function $g_{n,a} := g_n \colon G \setminus \{a\} \to \mathbb{C}, z \mapsto f_n(z) - f_n(a)$ has no zero (i.e. $N_{g_n}(0) = 0$). As $(g_n)_n$ converges locally uniformly to $g_a \colon G \setminus \{a\} \to \mathbb{C}, z \mapsto f(z) - f(a)$, Proposition 10.9 implies for all $a \in G$ that either $g_a = 0$ or that g has no zero. If there exists $a \in G$ such that $g_a = 0$, then f is constant and $g_a = 0$ for all $a \in G$. Hence otherwise g_a has no zero for all $a \in G$ and hence f is injective. \Box

(D) Application: Fourier transform

Motivation: Let G be a locally compact abelian topological group (e.g. $G = (\mathbb{R}, +)$ or $G = (S^1, \cdot)$ with $S^1 = \{z \in \mathbb{C} ; |z| = 1\}$). Let μ_G be a translation invariant measure on the Borel σ -algebra $\mathcal{B}(G)$ of G, a so-called Haar measure (e.g. $\mu_{\mathbb{R}} = \lambda^1$ the Lebesgue measure, or μ_{S^1} the image of λ^1 under the map $[0, 1] \to S^1, x \mapsto \exp(2\pi i x)$). Let $\hat{G} := \operatorname{Hom}_{\operatorname{Grp}}(G, S^1)$ (Pontryagin dual).

Let $f \in L^1(G, \mathcal{B}(G), \mu_G; \mathbb{C})$. Define its Fourier transform

$$\hat{f}(\chi) := \int_{G} \chi(t) f(t) \, d\mu_G(t)$$

Examples:

(1) For $G = S^1$ one has an isomorphism

$$\mathbb{Z} \xrightarrow{\sim} \hat{G} = \operatorname{Hom}(S^1, S^1), \qquad n \mapsto (z \mapsto z^{-n})$$

and for $f: S^1 \to \mathbb{C}$ integrable:

$$\hat{f}(n) = \int_{S^1} t^n f(t) \, d\mu_{S^1} = \int_0^1 e^{2\pi i n t} f(e^{2\pi i t}) \, dt, \qquad n \in \mathbb{Z}$$

cf. Proseminar on Fourier analysis.

(2) For $G = \mathbb{R}$ one has an isomorphism

$$\mathbb{R}\mapsto \hat{G}=\operatorname{Hom}(\mathbb{R},S^1),\qquad \tau\mapsto (t\mapsto e^{-2\pi i\tau t}).$$

and hence for $f \colon \mathbb{R} \to \mathbb{R}$ integrable:

$$\hat{f}(\tau) = \int_{\mathbb{R}} e^{-2\pi i \tau t} f(t) \, d\lambda^1(t), \qquad \tau \in \mathbb{R}.$$

Interpretation: Let $(t \mapsto f(t)) \in L^1(\mathbb{R})$ be a time-dependent function (t measured in seconds). Then $\hat{f}(\tau)$ measures whether the frequency $|\tau|$ (τ measured in hertz) is present in f.

Theorem 10.11. Let f be meromorphic on \mathbb{C} such that P(f) is finite and $P(f) \cap \mathbb{R} = \emptyset$. Assume that there exists a constant $M \in \mathbb{R}$ such that

$$|f(z)| \le \frac{M}{|z|}$$

for |z| sufficiently large. Let $\tau \in \mathbb{R}^{\leq 0}$. Then

$$\int_{-\infty}^{\infty} e^{-2\pi i\tau t} f(t) dt = 2\pi i \sum_{z \in \mathbb{H}} \operatorname{res}_{z}(e^{-2\pi i\tau z} f(z)),$$

where $\mathbb{H} := \{ z \in \mathbb{C} ; \operatorname{Im}(z) > 0 \}$ is the upper half plane.

Proof. For simplicity, take $\tau = -1$ (the proof in the general case is the same). Let $A, B \in \mathbb{R}^{>0}$ and set D := A + B. By the residue theorem we have for A and B sufficiently large

$$2\pi i \sum_{z \in \mathbb{H}} \operatorname{res}_z(e^{2\pi i z} f(z)) = \int_{\overline{-A, -A + iD, B + iD, B, -A}} e^{2\pi i z} f(z) \, dz.$$

It suffices to show that the integral over the three sides other than the bottom side of this rectangle tend to 0 as A, B tend to infinity. For this we first note that for x = Re(z) and y = Im(z) we have

$$e^{2\pi iz} = e^{2\pi ix}e^{-2\pi y}.$$

For the top side of the rectangle we have

$$\begin{aligned} |-\int\limits_{-A+iD,B+iD} e^{2\pi i z} f(z) \, dz| &= |\int\limits_{-A}^{B} e^{2\pi i x} e^{-2\pi D} f(x+iD) \, dx| \\ &\leq e^{-2\pi D} \int\limits_{-A}^{B} |f(x+iD)| \, dx \\ &\leq e^{-2\pi D} \frac{M}{D} (A+B) = M e^{-2\pi (A+B)} \\ &\xrightarrow{A,B \to \infty} 0. \end{aligned}$$

For the right side we have

$$\begin{split} |\int\limits_{\overline{B+iD,B}} e^{2\pi i z} f(z) \, dz| &= |\int\limits_{0}^{D} e^{2\pi i B} e^{-2\pi y} f(B+iy) \, dy| \\ &\leq \frac{M}{B} \int\limits_{0}^{D} e^{-2\pi y} \, dy \\ &= \frac{M}{2\pi B} (1-e^{-2\pi D}) \\ \stackrel{A,B \to \infty}{\longrightarrow} 0. \end{split}$$

A similar estimate shows that the integral over the left side tends to 0.

11 Riemann mapping theorem

Notation: In this section we let $\mathbb{E} := \{ z \in \mathbb{C} ; |z| < 1 \}$ be the open unit disc and $\mathbb{H} := \{ z \in \mathbb{C} ; \operatorname{Im}(z) > 0 \}$ the upper half plane.

(A) Automorphisms of the disc and of the upper half plane

Definition 11.1. Let $U \subseteq \widehat{\mathbb{C}}$ be open. A biholomorphic automorphism of U is a biholomorphic map $f: U \to U$. We denote by $\operatorname{Aut}_{\operatorname{hol}}(U)$ the set of biholomorphic automorphisms of U, endowed with a group structure by composition:

$$\operatorname{Aut}_{\operatorname{hol}}(U) \times \operatorname{Aut}_{\operatorname{hol}}(U) \to \operatorname{Aut}_{\operatorname{hol}}(U), \qquad (f,g) \to f \circ g.$$

Example 11.2.

- (1) For $a, b \in \mathbb{C}$, $a \neq 0$, the maps $\mathbb{C} \to \mathbb{C}$, $z \mapsto az + b$ are biholomorphic automorphism⁹.
- (2) For all $\varphi \in \mathbb{R}$ the rotations $z \mapsto e^{i\varphi}z$ by the angle φ are biholomorphic automorphisms of $B_r(0)$ for all r > 0.

Proposition 11.3 (Schwarz lemma). Let $f : \mathbb{E} \to \mathbb{E}$ be holomorphic with f(0) = 0. Then

(1) $|f(z)| \leq |z|$ for all $z \in \mathbb{E}$.

- (2) If there exists $0 \neq z_0 \in \mathbb{E}$ with $|f(z_0)| = |z_0|$, then f is a rotation.
- (3) $|f'(0)| \leq 1$, and if equality holds, then f is a rotation.

⁹In fact, these are the only biholomorphic automorphisms of \mathbb{C} : If $f: \mathbb{C} \to \mathbb{C}$ is any automorphism of \mathbb{C} , then f is a homeomorphism. Thus for all $R \in \mathbb{R}^{>0}$, $f^{-1}(\overline{B_R(0)})$ is compact. In other words: If we define $\hat{f}: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ by $\hat{f}(z) := f(z)$ for $z \in \mathbb{C}$ and $\hat{f}(\infty) := \infty$, then for every open neighborhood Uof ∞ in $\widehat{\mathbb{C}}$, $\hat{f}^{-1}(U)$ is an open neighborhood of ∞ . This shows that \hat{f} is continuous in ∞ and hence a holomorphic map $\widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$. By Exercise 41(e), \hat{f} is of the form $z \mapsto \frac{az+b}{cz+d}$ with $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2(\mathbb{C})$. As \hat{f} has no pole in \mathbb{C} , one has c = 0 and hence f is of the form $z \mapsto (a/d) + (b/d)z$.

Proof. (1). $f(0) = 0 \Rightarrow \operatorname{ord}_0(f) \ge 1 \Rightarrow \operatorname{ord}_0(f(z)/z) = \operatorname{ord}_0(f) - \operatorname{ord}_0(z) = \operatorname{ord}_0(f) - 1 \ge 0$. Thus $z \mapsto g(z) := f(z)/z$ is holomorphic in \mathbb{E} with g(0) = f'(0). Let r < 1. For $z \in \partial B_r(0)$ one has $|g(z)| \le 1/r$ (because |f(z)| < 1). By Corollary 7.11 we have $|g(z)| \le 1/r$ for all $z \in B_r(0)$. Letting $r \to 1$ gives (a). (2).

$$|f(z_0)| = |z_0| \stackrel{(1)}{\Rightarrow} |g| \text{ has a maximum in } \mathbb{E}$$

$$\stackrel{7.10}{\Rightarrow} g \text{ is constant}$$

$$\Rightarrow f(z) = cz \text{ for some } c \in \mathbb{C}$$

$$|f(z_0)| = |z_0| \quad |c| = 1.$$

(3). (1) $\Rightarrow |g(z)| \leq 1$ for all $z \in \mathbb{E}$ and hence $|g(0)| = |f'(0)| \leq 1$. If equality holds, g = c for some constant $c \in \mathbb{C}$ by the maximum principle. Then $|g(0)| = 1 \Rightarrow |c| = 1$.

Corollary 11.4. Let $f : \mathbb{E} \to \mathbb{E}$ be a biholomorphic automorphism with f(0) = 0. Then f is a rotation.

Proof. f(0) = 0 and $f^{-1}(0) = 0$. Applying the Proposition 11.3 (1) to f and f^{-1} implies |f(z)| = |z| for all $z \in \mathbb{E}$. Hence Proposition 11.3 (2) implies that f is a rotation.

Proposition 11.5. Let $f : \mathbb{E} \to \mathbb{E}$ be a biholomorphic automorphism. Then there exist $\varphi \in \mathbb{R}$ and $\alpha \in \mathbb{E}$ such that

(*)
$$f(z) = e^{i\varphi} \frac{\alpha - z}{1 - \bar{\alpha}z}$$

Proof. For $\alpha \in \mathbb{E}$ define

(11.5.1)
$$\psi_{\alpha} \colon \mathbb{E} \to \mathbb{C}, \qquad \psi_{\alpha}(z) = \frac{\alpha - z}{1 - \bar{\alpha}z}$$

(*i*). Claim: ψ_{α} is a biholomorphic automorphism $\mathbb{E} \to \mathbb{E}$ (and hence f as in (*) is a biholomorphic automorphism); see Exercise 27 (b). For $u \in \mathbb{C}$ with |u| = 1 write $u = e^{i\theta}$. Then

$$\psi_{\alpha}(e^{i\theta}) = \frac{\alpha - e^{i\theta}}{e^{i\theta}(e^{-i\theta} - \alpha)} = e^{-i\theta}\frac{w}{\bar{w}}, \quad \text{with } w := \alpha - e^{i\theta}.$$

Therefore $|\psi_{\alpha}(u)| = 1$. Hence $\psi_{\alpha}(z) \in \mathbb{E}$ for all $z \in \mathbb{E}$ (Corollary 7.11). Moreover ψ_{α} is its own inverse: For $z \in \mathbb{E}$ we have

$$\begin{aligned} (\psi_{\alpha} \circ \psi_{\alpha})(z) &= \frac{\alpha - \frac{\alpha - z}{1 - \bar{\alpha}z}}{1 - \bar{\alpha}\frac{\alpha - z}{1 - \bar{\alpha}z}} \\ &= \frac{\alpha - |\alpha|^2 z - \alpha + z}{1 - \bar{\alpha}z - |\alpha|^2 + \bar{\alpha}z} \\ &= \frac{(1 - |\alpha|^2)z}{1 - |\alpha|^2} \\ &= z. \end{aligned}$$

(*ii*). Now let $f : \mathbb{E} \to \mathbb{E}$ be a biholomorphic automorphism. Then there exists $\alpha \in \mathbb{E}$ such that $f(\alpha) = 0$. Thus $g := f \circ \psi_{\alpha}$ is a biholomorphic automorphism of \mathbb{E} with g(0) = 0, hence $g(z) = e^{i\varphi}z$ for some $\varphi \in \mathbb{R}$ (Corollary 11.4) and thus

$$f = g \circ \psi_{\alpha}^{-1} = g \circ \psi_{\alpha}.$$

Proposition and Definition 11.6. The map

$$f: \mathbb{H} \to \mathbb{E}, \qquad f(z) := \frac{z-i}{z+i}$$

is biholomorphic. It is called the Cayley map.

Proof. Clearly f is holomorphic. Moreover for $z \in \mathbb{H}$, we have |z - i| < |z + i|, thus f maps \mathbb{H} to \mathbb{E} . We claim that

$$g \colon \mathbb{E} \to \mathbb{C}, \qquad g(w) := i \frac{1+w}{1-w}$$

yields an inverse of f.

We first show $g(w) \in \mathbb{H}$ for $w \in \mathbb{E}$: Let w = u + iv with $u, v \in \mathbb{R}$. Then

$$Im(g(w)) = Re\left(\frac{1+u+iv}{1-u+iv}\right)$$
$$= Re\left(\frac{(1+u+iv)(1-u-iv)}{(1-u)^2+v^2}\right)$$
$$= \frac{1-u^2+v^2}{(1+u)^2+v^2} > 0$$

since $w \in \mathbb{E}$ and hence $u^2 < 1$. Moreover for $w \in \mathbb{E}$,

$$f(g(w)) = \frac{i(\frac{1+w}{1-w}-1)}{i(\frac{1+w}{1-w}+1)} = \frac{1+w-1+w}{1+w+1-w} = w,$$

and similarly g(f(z)) = z for $z \in \mathbb{H}^{10}$.

Remark 11.7. Let $U, V \subseteq \mathbb{C}$ be open, and let $F: U \to V$ be biholomorphic. Then

$$F^*$$
: Aut_{hol}(V) \rightarrow Aut_{hol}(U), $\alpha \mapsto F^{-1} \circ \alpha \circ F$

is an isomorphism of groups whose inverse is given by $\beta \mapsto F \circ \beta \circ F^{-1}$.

Theorem 11.8. For $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{R})$ the map

$$f_M \colon \mathbb{H} \to \mathbb{C}, \qquad z \mapsto \frac{az+b}{cz+d}$$

¹⁰One can also show that $\operatorname{GL}_2(\mathbb{C}) \to \operatorname{Aut}_{\operatorname{hol}}(\widehat{\mathbb{C}}), M := \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto (f_M : z \mapsto \frac{az+b}{cz+d})$ is a group homomorphism and for $M, N \in \operatorname{GL}_2(\mathbb{C})$ we have $f_M = f_N$ if $M = \lambda N$ for some $\lambda \in \mathbb{C}^{\times}$. Then the Cayley map is f_M for $M = \begin{pmatrix} 1 & -i \\ 1 & i \end{pmatrix}$ with inverse f_N with $N = \frac{1}{2i} \begin{pmatrix} i & i \\ -1 & i \end{pmatrix}$.

yields a biholomorphic automorphism of \mathbb{H} , and every biholomorphic automorphism of \mathbb{H} is of this form. More precisely, the map

$$\alpha \colon \operatorname{SL}_2(\mathbb{R}) \to \operatorname{Aut}_{\operatorname{hol}}(\mathbb{H}), \qquad M \mapsto f_M$$

is a surjective group homomorphism with kernel $\mu_2 := \{ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \}$. Finally, for all $z, w \in \mathbb{H}$ there exists $M \in SL_2(\mathbb{R})$ such that $f_M(z) = w$.

Therefore we see that $\operatorname{Aut}_{\operatorname{hol}}(\mathbb{H}) \cong \operatorname{PSL}_2(\mathbb{R}) := \operatorname{SL}_2(\mathbb{R})/\mu_2$. The last assertion means that $\operatorname{SL}_2(\mathbb{R})$ acts transitively on \mathbb{H} .

Proof. (i). For $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{R})$ and $z \in \mathbb{H}$ we have

(*)
$$\operatorname{Im}(f_M(z)) = \frac{(ad - bc)\operatorname{Im}(z)}{|cz + d|^2} > 0,$$

hence $f_M(\mathbb{H}) \subseteq \mathbb{H}$.

(*ii*). For $M, M' \in SL_2(\mathbb{R})$ one has $f_M \circ f_{M'} = f_{MM'}$ (straightforward calculation). Hence f_M is an automorphism with inverse $f_{M^{-1}}$ and $M \mapsto f_M$ is a group homomorphism $SL_2(\mathbb{R}) \to Aut_{hol}(\mathbb{H})$.

(*iii*). Let $F \colon \mathbb{H} \to \mathbb{E}$ be the Cayley map, thus $F = f_C$ with $C = \begin{pmatrix} 1 & -i \\ 1 & i \end{pmatrix}$. For $\varphi \in \mathbb{R}$ let $r_{\varphi} \colon \mathbb{E} \to \mathbb{E}, z \mapsto e^{i\varphi}z$ be the rotation by $\varphi \in \mathbb{R}$. Then

$$F^*(r_{\varphi}) = f_{M_{\theta}}, \quad \text{with } M_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}, \ \theta := -\varphi/2$$

by an easy calculation (use $r_{\varphi} = f_{R_{\varphi}}$ with $R_{\varphi} = \begin{pmatrix} e^{i\varphi} & 0 \\ 0 & 1 \end{pmatrix}$ and $CM_{\theta} = e^{i\theta}R_{\varphi}C$, hence $f_C \circ f_{M_{\theta}} = f_{R_{\varphi}} \circ f_C$).

(iv). Proof of the last assertion: It suffices to show that for all $z \in \mathbb{H}$ there exists $M = M_z \in \mathrm{SL}_2(\mathbb{R})$ such that $f_M(z) = i$ (then $f_{M_w^{-1}}f_{M_z}(z) = w$ for $z, w \in \mathbb{H}$). Let $c \in \mathbb{R}$ such that $c^2 = \mathrm{Im}(z)/|z|^2$ and set $M_1 := \begin{pmatrix} 0 & -c^{-1} \\ c & 0 \end{pmatrix} \in \mathrm{SL}_2(\mathbb{R})$. Then (*) shows that $\mathrm{Im}(f_{M_1}(z)) = 1$, say $f_{M_1}(z) = u + i$ with $u \in \mathbb{R}$. For $M_2 = \begin{pmatrix} 1 & -u \\ 0 & 1 \end{pmatrix} \in \mathrm{SL}_2(\mathbb{R})$ we have $f_{M_2}(w) = w - u$ in particular

$$f_{M_2M_1}(z) \stackrel{(u)}{=} f_{M_2}(f_{M_1}(z)) = u + i - u = i.$$

(v). " $M \mapsto f_M$ is surjective": Let $f \in \operatorname{Aut}_{\operatorname{hol}}(\mathbb{H})$ and let $\beta \in \mathbb{H}$ with $f(\beta) = i$. By (iv) there exists $N \in SL_2(\mathbb{R})$ with $f_N(i) = \beta$. Therefore $g := f \circ f_N$ satisfies g(i) = i and $F \circ g \circ F^{-1} \in \operatorname{Aut}_{\operatorname{hol}}(\mathbb{E})$ fixes 0. Thus $F \circ g \circ F^{-1}$ is a rotation and hence $g = f_{M_{\theta}}$ for some $\theta \in \mathbb{R}$ by (iii). Therefore $f = f_{M_{\theta}N^{-1}}$.

(vi). "ker(α) = μ_2 ": Clearly $f_M = \operatorname{id}_{\mathbb{H}}$ for $M \in \mu_2$ and hence $\mu_2 \subseteq \operatorname{ker}(\alpha)$. Conversely, let $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{R})$ with $f_M = \operatorname{id}_{\mathbb{H}}$. (iii) shows that $f_M(i) = i$ implies a = d and b = -c. Then an easy calculation shows that $f_M(1+i) = 1+i$ implies b = c = 0. Therefore $a = d = \pm 1$ because $M \in \operatorname{SL}_2(\mathbb{R})$.

(B) The theorem of Arzela-Ascoli

Definition 11.9. Let V be a finite-dimensional \mathbb{R} -vector space endowed with some norm $\|\cdot\|$. Let $X \subseteq V$ be open. Let (Y,d) be a metric space, $\mathcal{C}(X,Y) := \{f : X \to Y ; f \text{ continuous}\}$. Let $\Phi \subseteq \mathcal{C}(X,Y)$ be a subset.

- (1) Φ is called *normal* if every sequence in Φ has a subsequence that converges locally uniformly (the limit is not necessarily in Φ).
- (2) Φ is called *uniformly bounded on compact subspaces* if for each compact subspace $K \subseteq X$ the subset $\{f(z) ; z \in K, f \in \Phi\} \subseteq Y$ is bounded.
- (3) Then Φ is called *equicontinuous on compact subspaces* (German: gleichgradig stetig auf kompakten Teilräumen) if for each compact subspace $K \subseteq X$ and for all $\varepsilon > 0$ there exists $\delta > 0$ such that for all $z, w \in K$ one has

$$||z - w|| < \delta \Rightarrow d(f(z), f(w)) < \varepsilon, \quad \text{for all } f \in \Phi.$$

Theorem 11.10 (Theorem of Arzela-Ascoli). Let V and Y be a finite-dimensional \mathbb{R} -vector spaces and let $X \subseteq V$ be open. Endow V and Y with norms $\|\cdot\|$. Let $\Phi \subseteq C(X, Y)$ be a subset. If Φ is uniformly bounded and equicontinuous on compact subsets, then Φ is normal.

There are more general and different variants of this theorem, for instance for an arbitrary compact space X (e.g., Bourbaki: *General topology*, Chap. X, §2) but then one has to be more carefully in the definitions (Definition 11.9).

Proof. Let $(f_n)_n$ be a sequence in Φ . Choose a sequence $(w_j)_{j\in\mathbb{N}}$ in X such that $\{w_j ; j \in \mathbb{N}\}$ is dense in X (e.g., identify $V \cong \mathbb{R}^d$ as vector spaces and choose a numbering of $X \cap \mathbb{Q}^d$). By hypothesis, the set $\{f_n(w_1) ; n \in \mathbb{N}\}$ is bounded in Y and hence there exists an infinite subset $N_1 \subseteq \mathbb{N}$ such that $(f_n(w_1))_{n\in N_1}$ converges in Y.

Continuing the process we obtain for all $j \in \mathbb{N}$ infinite subsets $N_j \subseteq N_{j-1}$ such that $(f_n(w_j))_{n \in N_j}$ converges in Y. For all $m \in \mathbb{N}$ choose $n_m \in N_m$ such that $n_m \to \infty$ for $m \to \infty$ and set $g_m := f_{n_m} \in \Phi$. Then for all $j \in \mathbb{N}$ the sequence $(g_m(w_j))_{m \ge j}$ is a subsequence of $(f_n(w_j))_{n \in N_j}$ and hence converges for all $j \in \mathbb{N}$.

We claim that $(g_m)_m$ converges locally uniformly. By Remark 2.19 it suffices to show that $(g_m)_m$ converges uniformly on every compact subspace K of X. Let $\varepsilon > 0$. Choose $\delta > 0$ such that for $x, y \in K$ one has

$$||x - y|| < \delta \Rightarrow ||f(x) - f(y)|| < \varepsilon$$
 for all $f \in \Phi$.

As $\{w_j ; j \in \mathbb{N}\}$ is dense in X, there exists for all $x \in X$ a w_j with $||x - w_j|| < \delta$; in other words, $X \subseteq \bigcup_{j \in \mathbb{N}} B_{\delta}(w_j)$. As K is compact, there exists a finite subset $J \subset \mathbb{N}$ such that $K \subseteq \bigcup_{j \in J} B_{\delta}(w_j)$. Pick $N \in \mathbb{N}$ so large that for n, m > N we have

$$\|g_m(w_j) - g_n(w_j)\| < \varepsilon \qquad \forall j \in J$$

Let $z \in K$, say $z \in B_{\delta}(w_i)$ for some $j \in J$. Then we have for n, m > N:

$$||g_n(z) - g_m(z)|| \le ||g_n(z) - g_n(w_j)|| + ||g_n(w_j) - g_m(w_j)|| + ||g_m(w_j) - g_m(z)|| < 3\varepsilon.$$

Hence $(g_{m|K})_m$ is a Cauchy sequence in the \mathbb{R} -vector space $\mathcal{C}(K;Y)$ endowed with the supremum norm. As this space is a Banach space, $(g_m)_m$ converges uniformly on K.

(C) Montel's theorem

Theorem 11.11 (Montel's theorem). Let $U \subseteq \mathbb{C}$ be open and let $\Phi \subseteq \mathcal{O}(U) = \{f: U \to \mathbb{C} ; f \text{ holomorphic}\}$ be a subset which is uniformly bounded. Then Φ is normal.

Remark 11.12. For real analytic functions the analogue of Montel's theorem is wrong. Consider $f_n: (0,1) \to \mathbb{R}$, $f_n(x) = \sin(nx)$. Then $\Phi = \{f_n ; n \in \mathbb{N}\}$ is uniformly bounded, but there exists no subsequence of $(f_n)_n$ that converges even pointwise.

Proof of Montel's theorem. By the Theorem of Arzela-Ascoli it suffices to prove that Φ is equicontinuous on compact subspaces. Let $K \subseteq U$ be compact. Choose $r \in \mathbb{R}^{>0}$ such that $B_{3r}(z) \subseteq U$ for all $z \in K$. Let $z, w \in K$ with |z - w| < r and let $\gamma := \partial B_{2r}(w)$. Then for $\zeta \in \{\gamma\}$ one has $|\zeta - w| = 2r$ and $|\zeta - z| \geq r$. Therefore

(*)
$$\left|\frac{1}{\zeta-z} - \frac{1}{\zeta-w}\right| = \frac{|z-w|}{|\zeta-z||\zeta-w|} \le \frac{|z-w|}{2r^2}.$$

ī

Let K' be the compact set $\{z \in \mathbb{C} ; \operatorname{dist}(z, K) \leq 2r\} \subseteq U$. By hypothesis there exists $B \in \mathbb{R}$ such that $|f(z)| \leq B$ for all $f \in \Phi$ and all $z \in K'$.

Then Cauchy integral formula yields for all $z, w \in K$ with |z - w| < r and for all $f \in \Phi$:

$$\begin{aligned} |f(z) - f(w)| &= \left| \frac{1}{2\pi i} \int_{\gamma} f(\zeta) \left(\frac{1}{\zeta - w} - \frac{1}{\zeta - w} \right) \, d\zeta \\ &\stackrel{(*)}{\leq} \frac{1}{2\pi} 4\pi r B \frac{|z - w|}{2r^2} \\ &= C|z - w| \quad \text{with } C := B/r. \end{aligned} \end{aligned}$$

Hence for all $\varepsilon > 0$ we have for $\delta = \min\{r, \varepsilon/C\}$ that for all $z, w \in K$ and $f \in \Phi$:

$$|z - w| < \delta \Rightarrow |f(z) - f(w)| < \varepsilon.$$

Therefore Φ is equicontinuous on K.

(D) Riemann mapping theorem

Definition 11.13. Two open subsets U and U' of \mathbb{C} are called *biholomorphic equivalent* or *conformal equivalent* if there exists a biholomorphic map $f: U \to U'$.

Example 11.14.

- (1) We have seen in Proposition 11.6 that \mathbb{E} and \mathbb{H} are biholomorphic equivalent.
- (2) The open simply connected sets \mathbb{C} and \mathbb{E} are not biholomorphic equivalent (Liouville's theorem implies that every holomorphic function $\mathbb{C} \to \mathbb{E}$ is constant).
- (3) (1) and (2) imply that \mathbb{C} and \mathbb{H} are not biholomorphic equivalent.
- (4) The domains $\mathbb{C} \setminus \mathbb{R}^{\leq 0}$ and $\{z \in \mathbb{C} ; -\pi < \text{Im}(z) < \pi\}$ are biholomorphic equivalent via the principal branch of logarithm (Example 7.5).

(5) If $G \subseteq \mathbb{C}$ is connected (resp. simply connected) and $U \subseteq \mathbb{C}$ open is biholomorphic equivalent to G, then U is connected (resp. simply connected).

Theorem 11.15 (Riemann mapping theorem). Let $G \subseteq \mathbb{C}$ be a simply connected domain with $G \neq \mathbb{C}$. Let $z_0 \in G$. Then there exists a unique biholomorphic map $F: G \to \mathbb{E}$ such that

 $F(z_0) = 0$ and $F'(z_0) \in \mathbb{R}^{>0}$.

Corollary 11.16. Any two simply connected domains $G \subsetneq \mathbb{C}$ and $G' \subsetneq \mathbb{C}$ are biholomorphic equivalent.

Proof of the Riemann mapping theorem. (i). Unicity: Let $F_1, F_2: G \to \mathbb{E}$ be biholomorphic maps that satisfy the above conditions. Then $H := F_1 \circ F_2^{-1}$ is an automorphism of \mathbb{E} with H(0) = 0. Hence $H(z) = e^{i\varphi}z$ for some $\varphi \in \mathbb{R}$ (Corollary 11.4). As $H'(0) = F'_1(0)F'_2(0)^{-1} \in \mathbb{R}^{>0}$ we have $e^{i\varphi} = 1$ and hence $F_1 = F_2$.

(*ii*). Claim: G is biholomorphic equivalent to an open subset of \mathbb{E} that contains 0. As $G \neq \mathbb{C}$ there exists $\alpha \in \mathbb{C} \setminus G$. Then $z \mapsto z - \alpha$ is non-zero on G. As G is simply connected, there exists a function

 $L\colon G\mapsto \mathbb{C}$

with $e^{L(z)} = z - \alpha$ (Proposition 6.4). In particular, L is injective. Fix $w \in G$. Then there exists $\varepsilon > 0$ such that

(*)
$$B_{\varepsilon}(L(w) + 2\pi i) \cap L(G) = \emptyset.$$

Otherwise there would exist a sequence $(z_n)_n$ in G such that $\lim_n L(z_n) = L(w) + 2\pi i$. Applying exp we would obtain $\lim_n z_n = w$ because exp is continuous. Hence $\lim_n L(z_n) = L(w)$; contradiction. Now consider

$$F: G \to \mathbb{C}, \qquad F(z) := \frac{1}{L(z) - (L(w) + 2\pi i)}.$$

As L is injective, F is injective. Hence $F: G \to F(G)$ is biholomorphic (Corollary 7.4). By (*) one has $|F(z)| \leq 1/\varepsilon$ for all $z \in G$, hence F(G) is bounded. We may therefore translate and rescale F to obtain a biholomorphic map with $0 \in F(G) \subseteq \mathbb{E}$. (*iii*). By (ii) we may assume that $0 \in G \subseteq \mathbb{E}$. Define

$$\Phi := \{ f \colon G \to \mathbb{E} ; f \text{ holomorphic, injective and } f(0) = 0 \}.$$

Then $\Phi \neq \emptyset$ because Φ contains the inclusion, and Φ is uniformly bounded because all functions in Φ take only values in \mathbb{E} . Moreover, (5.8.2) shows that there exists $C \in \mathbb{R}^{>0}$ with $|f'(0)| \leq C$ for all $f \in \Phi$. Hence

$$s := \sup_{f \in \Phi} |f'(0)|.$$

exists. We will show that there exists $f \in \Phi$ with |f'(0)| = s.

Choose a sequence $(f_n)_n$ in Φ such that $\lim_n |f'_n(0)| = s$. By Montel's theorem (Theorem 11.11), this sequence has a subsequence $(f_{n_k})_k$ that converges locally uniformly to some function $f: G \to \mathbb{C}$. By Theorem 5.14, f is holomorphic and $\lim_k f'_{n_k} = f'$. In particular |f'(0)| = s.

We claim that $f \in \Phi$: Clearly we have f(0) = 0. Since $s \ge 1$ (because $z \mapsto z$ is in Φ), f is non-constant and hence injective by Corollary 10.10. By continuity we have $|f(z)| \le 1$ for all $z \in G$ and from the maximum modulus principle we see that |f(z)| < 1 for all $z \in G$. This shows the claim.

(*iv*). Claim: $f: G \to \mathbb{E}$ is surjective ($\stackrel{7.4}{\Rightarrow} f$ is biholomorphic). Assume there exists $\alpha \in \mathbb{E} \setminus f(G)$. Consider the automorphism (11.5.1)

$$\psi_{\alpha} \colon \mathbb{E} \to \mathbb{E}, \qquad \psi_{\alpha}(z) = \frac{\alpha - z}{1 - \bar{\alpha} z}.$$

Then $G' := \psi_{\alpha}(f(G)) \subseteq \mathbb{E}$ is simply connected with $0 \notin G'$. Thus there exists a holomorphic square root function $r_2: G' \to \mathbb{E}$, i.e., r_2 satisfies $r_2(z)^2 = z$ for all $z \in G'$ (Remark 6.9). Set $\beta := r_2(\alpha)$ and define

$$F := \psi_{\beta} \circ r_2 \circ \psi_{\alpha} \circ f \colon G \to \mathbb{E}.$$

Then F is holomorphic, injective with F(0) = 0 and hence $F \in \Phi$. Set $r := |\alpha| < 1$. Then $|\beta| = \sqrt{r}$. An easy calculation using $\psi'_{\alpha}(z) = \frac{\bar{\alpha}\alpha - 1}{(1 - \bar{\alpha}z)^2}$ shows that |F'(0)| = C|f'(0)| with

$$C:=|\psi_\beta'(\beta)r_2'(\alpha)\psi_\alpha'(0)|=\frac{r+1}{2\sqrt{r}}>1.$$

This is a contradiction to the maximality of |f'(0)|.