Complex Analysis

Torsten Wedhorn

These are the lecture notes to my 2nd year Bachelor lecture in the summer semester
2013 on complex analysis in one variable. The manuscript differs from the lecture: It
does not contain any pictures, and the lecture is in German.
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1 Holomorphic maps

(A) Complex numbers and complex vector spaces

Reminder 1.1.
(1) Cis a field, and R is a subfield. Let C* := C\ {0}.
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(2) Every z € C has a unique representation z = = + iy with z = Re(z) € R the real
part of z, y = Im(2) € R the imaginary part of z and with i € C such that i2 = —1.

We denote by

|z| ;== Va2 4+ 42 € R2°

the absolute value of z and by
z:=x—iyeC

the complex conjugate of z.



(3) For z,w € C one has

2| =04 2 =0,

. R
2+ w| < |2] + |w[,} (= (C,| |) is normed R-vector space)

|2w] = |z]Jw].
(4) Every z € C* has a unique expression of the form
z = re'?,
where 7 = |z| € R”Y and ¢ € [0,27) = R/27Z is the argument of z.

Remark 1.2. Let V be a finite-dimensional C-vector space. Recall that all norms on
V' are equivalent and hence define the same topology. We always endow V' with this
topology.

If V = C", then a subset U C V is open if and only if for all z = (21,...,2,) € U there
exists € > 0 such that

B.(z) ={weC";|w—z|<eforalli=1,...,n} CU.

Remark 1.3. Let V, W be C-vector spaces.
(1) We may V also consider as an R-vector space with

dimg (V) = 2dim¢(V),

where 2 - 00 1= oo.
(2) For amap A: V — W we have

A is C-linear < A is R-linear and A(iv) = iA(v) for all v € V

We denote the C-linear maps V. — W by Homgc(V,W) and the R-linear maps
V — W by Homg (V, W).
(B) Complex differentiable maps

Notation: Let V, V' be always finite-dimensional C-vector spaces.

Definition 1.4. U C V open, f: U — V' a map.
(1) Let 2 € U. Then f is called complex differentiable in Z if there exists a C-linear

map
Df(z):V =V’
such that
— f(3) = Df(3 3
(1.4.1) lim f(z) = f(Z) ~f(2)(z Z) o,
z—Z ”Z _ Z”
where | - | is any norm on V.



(2) f is called holomorphic on U if f is continuously complex differentiable on U, i.e.
f is complex differentiable in all Z € U and the map

U — Homg(V, V'), Z— Df(2)

1S continuous.

(3) We set

oW, V"y:={f: U —V"; f holomorphic},
o) :=0U,C).

Remark 1.5. U C V open, f: U — V' amap. Then f is complex differentiable in Zz if
and only if f is differentiable in Z (in the sense of real analysis) and the R-linear map
Df(2): V — V' is C-linear. In particular the results of Analysis 2 show:

(1) Df(Z) is uniquely determined by (L.4.1)).

(2) If f is complex differentiable in Z, then f is continuous in Zz.

(3) £ is holomorphic in U < f is a C'-map and Df(Z) is C-linear for all Z € U.

Proposition 1.6 (Chain rule). V, V', V" finite-dimensional C-vector spaces, U C'V,
U C V" open. Let f: U — V', g: U — V" holomorphic with f(U) C U'. Then
go f: U — V" is holomorphic and for all Z € U:

D(go f)(2) = Dg(f(2)) o Df(2).

Proof. This follows immediately from and the analogous assertion for real differen-
tiable maps (because the composition of C-linear maps is again C-linear). O

Example 1.7.

(1) An R-linear map A: V — V' is holomorphic if and only if A is C-linear: One has
DA(zZ)=Aforall Zze V.

(2) The R-linear map C — C, z — Z is not holomorphic.

(3) The addition V@&V — V, (z,w) — 2z 4+ w and the i-th projection C* — C,
(21,...,2n) = 2 (i € {1,...,n}) are C-linear and hence holomorphic.

(4) The multiplication p: C® C — C, (z,w) + zw is a Cl-map with

Du(z,w): C* = C, (u,v) — uw + vz

for all (Z,w) € C2. Hence Du(Z,) is C-linear and g is holomorphic.
(5) Applying the chain rule, and several times we see that polynomial mappings

n 4 7
C" — C, (215 vy 2n) — E @iy in 21 2

7:17~~~7'ineN0
(where a;, .4, € Cis zero for all but finitely many 41, . ..,14,) are always holomorphic.

Corollary 1.8. Let U C V open.



(1) o(U, V") is a C-subvectorspace of the space of all maps U — V'. For f g €
o(U, V'), a € C one has

D(af +9)(2) = aDf(Z) + Dg(2).

(2) Let f,g: U — C be holomorphic. Then the product fg: U — C is holomorphic and
for Z € U one has (by Emmple and the chain rule):

D(fg)(2) = f(2)Dg(2) + g(2) D f(2).
In particular, ©(U) is a commutative C-algebra.

Theorem 1.9 (Inverse Function). Let U C V open and let f: U — V' be holo-
morphic. Let Z € U such that Df(2): V. — V' is invertible. Then there exist open
neighborhoods Z € W C V and f(2) € W' C V' such that fiw: W — W' is bijective
and such that g := (fjw)~*: W' — V is holomorphic.

Proof. The real analogue of the inverse function theorem implies the existence of W
and W’ such that g is a Cl-map with Dg(z") = Df(g(z'))~! for all 2 € W'. Therefore
Dg(z') is C-linear for all Z € W’. Hence g is holomorphic. O

Theorem 1.10. Let U C V be open. The following assertions are equivalent for a map

f:U—=Vv:

(i) f is holomorphic.

(ii) f is complex differentiable in Z for all Z € U.

(iii) f is analytic, i.e., locally given by a power sem'esH

(iv) For all Z € U, f is partially complex differentiable in Z (i.e., there exists a basis
(e1,...,en) of V such that for some € > 0 the maps

{teC; |t|<e} =V, t— f(Z+te;)
are complex differentiable for alli=1,...,n).
Analogous equivalences for real differentiable functions are completely wrong!

Proof. We will give a full proof of this theorem only for V' = V’ = C in Section
Here we only briefly indicate how one could proceed. Note that “(i) = (ii) = (iv)” are
trivial. In fact, (ii) implies that (iv) holds for every basis (e, ..., ey,).

1st step: Show that one can assume that V' = C. This is easy: By choosing a linear
isomorphismus V’ 2 C™ we may assume that V' = C™. Then f = (f1,..., fm) with
fj+ U — C. Then check that each assertion holds for f if and only if it holds for all f;.
2nd step: Prove that all assertions are equivalent if V' = V' = C (note that in this
case one trivially has “(ii) < (iv)”, and “(iii) = (i)” has essentially already shown in
Analysis 1. Thus it suffices to show “(ii) = (i) = (iii)”. This will be done in Section
3rd step: The second step shows “(iv) < (iii)”. Hence it remains to show that “(iv) =
(1)”. This a deep theorem due to Hartogs (see e.g.: L. Hérmander: An introduction to
complex analysis in several variables, Theorem 2.2.8). ]

!We leave this assertion deliberately vague.



(C) Holomorphy in one variable

Notation: In this subsection we identify C = R? 2 + (z,y), where z = Re(z),
y = Im(2).

b .
d € MQ(R) 18
C-linear if and only if A(iz) = iA(z) for all z € C. But the multiplication with i is

Remark 1.11. An R-linear map A: C — C given by a matrix <Z

given by the matrix <(1) _01> (¢ is the rotation by m/2). Hence A is C-linear if and

90 D=0 D or-ao-

In this case one has:

only if

(1.11.1) A:C—C, z = (a+ic)z.

Proposition 1.12. Let U C C be open, let f: U — C be a map, and let Z € U. Then

the following assertions are equivalent.

(i) f is complex differentiable in Z.

(ii) f is real differentiable (as a map f: R? D U — R?) and f satisfies the Cauchy-
Riemann equations:

ORe(f) ., _ Olm(/) olm(f) .\ _ _ORe(f)

(1.12.1) 5 2 9 (2), 0y ) = B ().
(iii) The limit
(1.12.2) )= lim f(5+h})L—f(5)
ReC\{0}

erists.
In this case Df(Z) is the linear map C — C, z — f'(2)z and we usually call f'(Z) the
(complex) derivative of f in Z. Moreover we have:

_ ORe(f)  Om(f) @D Om(f)  ORe(f)

Ox Ox oy oy
Proof. “(i) < (ii)”: Follows from Remark because D f(2) is given by the matrix

(1.12.3) f!

ORe(f) 8Re(f)>

Df(z) = <8Ir?n:%f) ool p)
ox dy

“(i) < (iii)”: f is complex differentiable in Z
< 3 C-linear map A: C — C such that

0 = lim
Py |z — Z|



< J a € C such that
o FE) ) —alz—2)

2% z—Z 2=z zZ—z

Finally ((1.12.3)) follows from ([1.11.1)). O

Corollary 1.13. U C C open, f: U — C. Then f is holomorphic, if (1.12.2) exists
for all Z € U and if f': U — C is continuous.

We will see that the continuity of f’ is automatic.

Example 1.14.
(1) Let n € Ng and let f: C — C, f(z) = 2". Then

7'(2) =0zt

(same proof as in the real case; alternatively use product rule and induction by n).
Hence the linearity of the derivative shows that for ag,...,a, € C and p: C — C,
p(z) = apz" + -+ 4+ a1z + ag one has

P (z) =napz" 14+ +ay.

(2) The same proof as in real analysis shows: Let U C C be open, f,g: U — C be
holomorphic with g(z) # 0 for all z € U. Then

U — C, z|—>f(z)

is holomorphic, and

for z € U. In particular

forn € Z and z € C*.

Proposition 1.15. Let U C C be open, f: U — C holomorphic. Then the following
assertions are equivalent.

(i) f'(2) =0 forall z€ U.

(ii) f is locally constant.
(iii) Re(f): U — R is locally constant.

(iv) Im(f) is locally constant.

(v) |f]: U = R=% is locally constant.

(vi) f: U — C, f(2) := f(z) is holomorphic.

Recall: X topological space, M set, t: X — M map. Then:

t locally constant
> Vo € X do € U C X open, such that ¢y is constant

&t is continuous, if we endow M with the discrete topology



Proof. “(i) < (ii)”: This has been proved in Analysis 2.
“(ii) = (iil) — (vi)”: Obvious.

“(ifi) = (1)”:

Re(f) _ Re(f)

CR equati N
quation .,

Re(f) locally constant = =0 = 0.

“(iv) = (i)”: Same argument.

“(vi) = (iii)”: f, f holomorphic = u := Re(f) = (f+f)/2 holomorphic. But Im(u) = 0
and thus we can apply “(iv) = (ii)” for u instead of f to see that u is locally constant.
“(v) = (vi)?: Clear if f = 0. As |f] is locally constant we can assume that f(z) # 0
for all z € U. Then: 1/f is a holomorphic function = f = |f|?/f holomorphic. O

2 Path integrals

(A) Vector valued 1-forms

Notation: In this section we denote by V' and W finite-dimensional R-vector spaces.
Later we will be mainly interested in the case V =W = C.

Definition 2.1. Let U C V be a subset. A W-valued 1-form on U is a map
w: U — Homg (V, W).

Note that it makes sense to say that w is continuous. Moreover if U C V is open, then
it makes sense to say that w is a C*-map (k € Ng U {o0}).

In the language of “Reelle Analysis” it would have been better to define that w is a
map that sends p € U to an alternating 1-multilinear form w(p): T,(U) — W and to
remark that T,,(U) =V for all p € U.

Example 2.2. Let U C V be open and let F': U — W be real differentiable. Then
dF := DF is a W-valued 1-form (DF(p) € Homg(V, W) for all p € U).

Remark 2.3 (Coordinates). We now assume V =R™. For i =1,...,m we call
' R™ - R, (P1, -y Pm) — Di

the coordinate functions.

Then ! is R-linear and da‘(p) = 2° € Homg(R™,R) for all p € R™. Hence for all
p € R™, (dzt(p),...,dx™(p)) is a basis of Homg(R™,R) and for every R-valued 1-form
won U C R™ we have

w(p) = fi(p)dz' (p) + -+ + fm(p)dz™ (p)

for unique functions f;: U — R.
More generally, every a € Hompg (R™, W) is of the form a = widz! (p) +- - - +w,dx™(p)
for unique w1, ...,w,, € W, where

widxi(p): R™ — W, Y= (Y1, Ym) — d:vi(p)(y)wi = yw;.



Hence every W-valued 1-form w on U C R™ is of the form
w= fide' + -+ frndz™

for unique functions f;: U — W und we have

(2.3.1) (fidz") (P) (Y1, - - - ym) = yifi(p).

Moreover (k € No U {o0}):
wis a C* 1-form < f1,..., fm are C¥ maps.

Remark 2.4. Let V = R™, U C R™ open, F: U — W real differentiable. Then one

has OF OF
dF = —da' + - 4+ —da™
By T+ +8xm T,

where g—:ﬁ:: U — W denotes the i-th partial derivative of F'.

Definition 2.5. Let U C R™ be open and let w = Y7, f;dz/: U — Homg(V, W) be
a W-valued 1-form.

(1) w is called ezact if there exists a real differentiable function F': U — W such that
w=dF.

(2) wis called closed if w is continuously differentiable and for all i, 5 € {1,...,m} one
has
ofi _ 0f;
al’j axi .

Proposition 2.6. Let U C R™ offen and let w be a continuously differentiable W -
valued 1-form on U. Then:
w exact = w closed.

Proof. This has been proved in Analysis 2: It is a direct calculation: As w is exact,
w = dF for a C?>-map F: U — W. And we know from Analysis 2 that
’F  O°F
8a:i8xj B 8xj8xi'

(B) Path integrals

Notation: Let a,b € R, a < b. Let V be a finite-dimensional R-vector space, W = R",
n € N.

Definition 2.7.

(1) Let X be a topological space. A continuous map v: [a,b] — X is called path in
X (German: Weg in X). The point vy(a) is called the startpoint, v(b) is called the
endpoint of v. We say that ~y is a path from ~y(a) to v(b). We also set:

{7} :==~([a,b]) C X.



(2) The path ~ is called closed or a loop (German: Schleife), if v(a) = v(b).

(3) A path v: [a,b] — X is called constant, if there exists xo € X such that y(t) =
for all t € [a,b]. We then denote v by e4,.

(4) Let X = V. A path v: [a,b] — V is called C¥, if
(&) V|(ap) I8 @ CF-map. For | < k we denote by v(): (a,b) — V its I-th derivative.
(b) For all | € N with [ < k the limits

D (g) = (1) O (p) = lim ~®
7 (a) = = lim~y (t), and V(b)) := }I/Igv (t)

exist.
(5) A path 7: [a,b] — V is called piecewise C if there exist a =tg <t; < --- <t, =b
such that v, ¢ s a Ck-path for alli=1,...,r

Definition 2.8. Let v: [a,b] — V be a Cl-path. Let w: {y} — Hom(V,W) be a
continuous 1-form. Define

[ /b s (= [velf ew

[a,]

Here we calculate the integral for every component of W.
More generally, if v is piecewise C! with a =ty < t; < --- < t,, = b such that Mitiz1,ti]

is a C'-path, then set
[o=% [ -

=1
’y‘[tz 1.t

If S CV with {y} € S and w: S — Hom(V, W) continuous, we write fvw instead of
f’y w| {7}

Example 2.9. Let x € V and let €;: [a,b] — U be the constant path with value z.
Then €/,(t) = 0 for all ¢ € [a, b] and hence

/w =0
Ex
for all w.

Remark 2.10. Let v: [a,b] — U be a piecewise C!-path and let w,n: {y} — Hom(V, W)
be a continuous 1-forms.
(1) For all A € R one has

(*) /)\w+77—>\/w+/n.
ol

v

If W is a C-vector space, (*) holds also for A € C.

’In the language of “Reelle Analysis”

10



(2) Let ¢,d € R with ¢ < d and let ¢: [c,d] — [a,b] be C! and bijective with +¢/(¢) > 0

for all t € [c,d]. Then
/w:i/w.

yop v

Proof. This has been proved in Analysis 2. O

Example 2.11. Let v: [a,b] = V = R™ t — (71(t),...,7m(t)) be a C'-path. Let
w=>" fidx" a W-valued 1-form with f;: {y} — W continuous. Then

/wzimwmww»w

~

b m
— [ St o) @) ae

=1
b m
@@/E)mmmmw
=1

Example 2.12. Let W = C, V = R? with coordinates = and y. Consider the 1-form
on R?\ {0}
1 —iy)d ix)d
(o + idy) = W F i)y
T +y 4y

Let v: [0,27] — R?, t — (cost,sint). Then one has

w =

/w = /(— sin(t)(cos(t) — isin(t)) + cos(t)(sin(t) + icos(t))) dt

¥ 0
27

= /i(sinz(t) + cos?(t)) dt
0
= 2mi.

Remark 2.13. Let v: [a,b] — V be a path. Let ¢: [0,1] — [a,b], ¢(t) = a + (b — a)t.
Then:
~ (piecewise) C¥ & v o0 p: [0,1] = V (piecewise) C*.

Moreover fww = fv w (if 7 is piecewise C!, w continuous W-valued 1-form).

op
Upshot: Can usually assume that paths are defined on [0, 1].

Definition 2.14. Let X be a topological space.
(1) Let v: [0,1] — X be a path. Define

7 0] = Xy () = (1 - 1)

the inverse path.

11



(2) Let v,0: [0,1] = X be two paths with (1) = §(0). Define a path

y(2t), 0<t<1/2

v-0:0,1] = X, t—
§(2t—1), 1/2<t<1.

Remark 2.15. Let 7,§: [0,1] — V piecewise C!-paths. Then Remark shows

w=— /w, for all w: {7} — Hom(V, W) continuous,

o 2l

/w = /w + /w, for all w: {7} U{d6} - Hom(V, W) continuous,
Y é

where for the second equality we also assume that (1) = 6(0).
Proposition 2.16. Let U C V be open, F: U — W a C'-map, and let ~y: [a,b] — U
be a piecewise C*-path. Then
[ = F6o) - o)
5
In particular fvw =0 if w is a continuous exact 1-form on U and 7 is closed.

Proof. This has been proved in Analysis 2. O

Example 2.17. Let V = R? with coordinates = and y, and let W = C.
(1) (Stupid example) The 1-form w = (x + iy?)dz + 23dy on R? is not closed: Set

for R2=C,  folz,y) =2+ iy%
fy:R2—>C> fy(x,y):xg.

Then

Ofe ) — 9 Uy 0y — 342
ay (ﬂf,y) - 2Zy7 827 (l’,y) - 31: N

(2) (Intelligent example) The 1-form on R?\ {0} (already considered in Example [2.12)

1
= d d
w x—i—iy(x—i_z )

is closed (easy calculation or see [4.2), but we have seen in Example that
fvw # 0 for the closed path 7: [0,27] — C, ¢ + (cost,sint). This shows that w is
not exact (Proposition [2.16)).

12



(C) Limits and Integral

Definition 2.18. Let X be a topological space, (Y,d) metric space. Let (f,), be a

sequence of functions f,: X — Y, and let f: X — Y. One says that

(1) (fn)n converges locally uniformly to f, if for all z € X there exists x € U C X open
such that

sup d( fo(2), f(2)) =30,
xelU

i.e., (fn)u)n converges uniformly to f)y.
(2) (fn)n converges compactly to f, if for every compact subspace K of X one has

sup d(fa(z), f(z)) =30,
rxeK

i.e., (fn|Kx)n converges uniformly to fx.

Remark 2.19. Notation as in Definition 2.18

(1) If (fn)n converges locally uniformly to f, then (f,), converges compactly to f
(every compact set K can be covered by finitely many U’s as above).

(2) Now assume that X C R? open (d € N). If (f,), converges compactly to f, then
(fn)n converges locally uniformly to f (Ve € X 32z € UC K C X with U C X
open and K compact).

Assertion (2) holds more generally, if X is locally compact.

Upshot: For X C R? open (or, more generally, for X locally compact) locally uniform

convergence and compact convergence are equivalent.

Proposition 2.20. Let S C V be a subspace, let v: [a,b] — V be a piecewiese C*-path
with {y} C S. Let (wp)nen be a sequence of continuous 1-forms wy,: S — Homg(V, W)
which converge locally uniformly to a 1-form w: S — Homg(V,W). Then w is contin-
uous, and

lim [ w,= /w.
n—oo
v gl

Proof. By Analysis 2 we already know that w is continuous. As (wy,), converges locally
uniformly and «' is bounded, (¢ — wy,((t))7 (t))n converges locally uniformly and
hence uniformly because [a,b] is compact. Hence the claim follows that the integral
commutes with uniform limit of functions (Analysis 1). O

(D) Digression: Connected and path-connected spaces

Definition 2.21. Let X # () be a topological space.

(1) X is called connected if for every open and closed () # Z C X one has X = Z.

(2) X is called path-connected if for all x,y € X there exists a continuous path
v:[0,1] = X with v(0) = z and v(1) = y.

Warning: According to this definition the empty space is not connected.

Proposition 2.22.
(1) Ewery path-connected toplogical space is connected.

13



(2) Let V' be finite-dimensional R-vector space, U C V be open and connected. Then
for any x,y € U there exists a piecewise C*°-path ~v: [0,1] — U with v(0) = z and
v(1) =y. (In particular: U is path-connected.)

Hence we see that if U C V open, V finite-dimensional R-vector space, then:
U connected < U path-connected.

In general there exist connected topological spaces (even subspaces of R?) which are
not path-connected.

Proof. This has been proved in Analysis 2. O

Definition 2.23. An open (path-)connected subspace of a finite-dimensional R-vector
space is called domain (German: Gebiet).

Proposition 2.24. Let () # X be a topological space. Then X is connected if and only
if for every set M every locally constant map t: X — M is constant.

Proof. Let X be connected. Choose x € X. If ¢ is locally constant, then t~1(¢(z)) is
open and closed in X and hence = X. Therefore t(y) = t(z) for all y € X.
Conversely, assume that X is not connected. Then there exists } # Y € X open and
closed. Hence the characteristic function of Y

1, ze€Y;

: X —{0,1}, T
v (0.1} {o, rdY

is locally constant but not constant. O

Remark 2.25. Let f: X — Y be a continuous surjective map of topological spaces.
If X is (path-)connected, then Y is (path-)connected.

Proof. “X connected = Y connected”: () # Z C Y open and closed = f~!(Z) open
and closed (because f is continuous) and f~1(Z) # () (because f is surjective). As X
is connected, f~1(Z) = X. Hence

[ surjective

Z = f(f71(2) = f(Xx) =Y.

“X path-connected = Y path-connected”: Let y,7/ € Y.
f surjective = 3 x,2’ € X with f(z) =y and f(2’) = ¢/. Hence

/

X path-connected = 3 v: [0,1] — X continuous with v(0) =z, v(1) = =
= fo~v:[0,1] = Y continuous with f(v(0)) =y, f(v(1)) =v'. O

Remark and Definition 2.26. Let X be a topological space. Define on X the relation
x ~y< 3 v:[0,1] - X path such that y(0) =z, v(1) = y.

This is an equivalence relation and the equivalence classes are called the path compo-
nents of X (i.e., z,y € X are in the same path-component if and only if z and y can
be connected by a path). The set of path components of X is denoted by m(X).
Every path-component is path-connected.

14



Proposition 2.27. Let V be finite-dimensional R-vector space, let X C V be open,
and let Z C X be a path-component. Then Z is open and closed in X.

For an arbitary topological space X a path component of X is in general neither open
nor closed.

Proof. As X is open in a finite-dimensional R-vector space, every point z € Z has an
open path-connected neighborhood U (e.g., some small open ball) in X. Hence U C Z.
This shows that Z is open. Hence

X\Z= U A
7' # Z path-comp. of X

is also open. O

The same proof is valid for every topological space X such that for all x € X there
exists an open path-connected neighborhood of X.

(E) Existence of primitives

The following result gives criteria for a 1-form w to be exact, i.e. to answer the question,
when a function F' exists with dF' = w (a primitive (German: Stammfunktion) of w).

Theorem 2.28. Let V be finite-dimensional R-vector space, W = R™. Let U C V

be open, w: U — Hom(V, W) a continuous 1-form. Then the following assertions are

equivalent:

(i) w is ezact.

(ii) For all x,y € U we have: Given piecewise C-paths v;: [a;, b;] — U, i = 1,2 with
y1(a1) =y2(a2) = = and y1(b1) = v2(b2) = y. Then

e
(iii) For every closed piecewise C'-path v: [a,b] — U one has

[e=o

~

Proof. Replacing U by its path-components, we may assume that U is a domain. Then
the result has been proved in Analysis 2 for W = R. The proof in the general case is
the same.

Recall that for the essential step “(ii) = (i)” one obtains F': U — W as follows. Fix

zo € U and define
F:U—=W, F(x)::/w::/w
zo Y

where « is any piecewise C'-path with startpoint =g and endpoint z. This is well defined
by (ii). One has dF = w (!).
Note that “(i) = (ii)” is a direct consequence of Proposition [2.16] O
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3 Homotopy

(A) Homotopy and simply connected spaces
Notation: Let X be a topological space, a,b € R, a < b.

Definition 3.1. Let 749,71 : [a,b] — X paths.

(1) Assume that yp(a) = v1(a) and v9(b) = v1(b). A homotopy of yo and v1 in X is a
continuous map H : [a,b] x [0,1] — X such that
(a) H(t,0) =(t) for all t € [a,b],

H(t,1) = 7(t) for all ¢ € [a,b].
(b) H(a,s) =v(a) =(a), H(b,s) = vo(b) = ~1(b) for alle s € [0, 1].
Thus for all s € [0,1] the paths 7s: [a ,b] — X, t — H(t,s) have all the same
endpoints as vy and ;.
If there exists a homotopy H of vy and v in X, we call 9 and ~; homotopic. We
then write v ~ § or H: v ~ 4.

(2) Assume that 9 and 7; are loops (but not necessarily with same endpoints). A
loop homotopy of vo and v1 in X is a continuous map H: [a,b] x [0,1] — X such
that
(a) H(t,0) = o(t) for all t € [a,b],

H(t,1) = y(t) for all ¢ € [a, b].
(b) H(a,s) = H(b,s) for alle s € [0,1].
Thus for all s € [0,1] the paths 74: [a,0] — X, t — H(t,s) are loops (but the
endpoints may change).
If there exists a loop homotopy H of 79 and v in X, we call 79 and 1 loop
homotopic.

(3) A path v: [a,b] — X is called null-homotopic in X if it is homotopic in X to a
constant path (= ~ is a loop).

Example 3.2. Let v: [0,271] — C, v(t) = €. Then v is a C*®-loop in C. We will

see that «y is null-homotopic in C (Remark will show that all loops in C are null-

homotopic in C) but that 7 is not null-homotopic in C* (this will follow from Theo-
rem and Example ([2)). Note that this is graphically clear.

Remark 3.3. Let C([a,b], X) be the set of all paths [a,b] — X. Then the relation
“homotopic” ~ is an equivalence relation on C([a, b], X).
The relation “loop homotopic” on the sets of all loops in X is an equivalence relation.

Proof. Let us show that ~ is an equivalence relation (the proof for “loop homotopic”
is the same). Reflexivity: Clear
Symmetry: H homotopy of v and 4. Then

H™: [a,b] x [0,1], H™ (t,s):=H(t,1—s)
is a homotopy of § and ~.
Transitivity: Let H': vy~ §, H”: § ~ ¢. Then
H'(t,2s), 0<s<1/2

H;[a,b]x[o,l], H(t,S) = {H”(t 28—1) 1/2<8<1.
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is a homotopy of v and . O

Remark 3.4. Let v,v1,72,73,01,92: [0,1] — X be paths in X.
(1) Let ¢: [0,1] — [0, 1] be continuous with ¢(0) = 0 and ¢(1) = 1. Then v ~ v o .
(2) Set xg :=7(0), 1 :=~y(1). Then

Exg " V=V =TExy-

(B) My =y =7, .

(4) Assume v;(1) = 6;(0) for i = 1,2. Then y; >~ 72, 61 =~ d2 = 71 - 61 = 72 - .
(5) 71 >~ 7v2 < v -7, null-homotopic.

(6) Assume v1(1) = 12(0) and ~2(1) = 43(0). Then

71 (y2 - v3) = (71 92) s

(7) Let v and ¢ be loops,  := 4(0), y := §(0). Then v and 0 are loop homotopic if
and only if there exists a path o: [0,1] — X with ¢(0) = z and o(1) = y such that
v and o -0 - 0~ are homotopic.

Proof. Exercise

For : Let H be a loop homotopy of v and § and define a path o: [0,1] — X,
o(s):=H(0,s) = H(1,s). Then 0(0) = x and (1) = y. Define a homotopy of v and
oc-0-0" by

o(3ts), 0<t<1/3;
H: 0,1 % [0,1],  H'(t;s):={ HBt—1,s), 1/3<t<2/3;
o((3—-3t)s), 2/3<t<1
Conversely, assume that there exists a path o with ¢(0) = 2 and o(1) = y such that
there exists a homotopy H': v ~ o -0 -0~. Then v and o -§ - 0~ are also loop

homotopic. As the relation of being loop homotopic is transitive, it suffices to show
that § and o -d - o0~ are loop homotopic. Define a loop homotopy of § and o -6 - o~ by

o(l—s+3ts), 0<t<1/3;
H:[0,1]x[0,1),  H(ts) =153t —1), 1/3<t<2/3;
o(1+(2—3t)s), 2/3<t<1.

Example 3.5. Let X = C, Z € C, let r € R>%. Recall that we defined
B (2)={z€C; |z—Z<r}.

Let i
~v::[0,1] — C, t — Z 4 rexp(2mit).

This is a loop. Instead of 77 we also write 0B, (Z).
Let zp € By(Z), € > 0. Then 0B,(Z) and 0B:(zp) are loop homotopic in C\ {z}.
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Proof. As “loop homotopic” is an equivalence relation, we may assume that £ > 0 is
small enough such that B.(z9) C B,(2).

For z € OB, (Z2) let z. € 0B(zp) be the point of intersection of a line through z and z
with 0B.(2p), i.e.,

Z — 20

|z — 20|

Define a loop homotopy of 0B,(Z) and 0B:(zp) by

Zei= 20+ €

H:[0,1] x[0,1] — C, (t,8) > sy (t)e + (1 — s)V2(1).
Then B.(z0) NH([0,1] x [0, 1]) = 0. In particular, H is a loop homotopy in C\ {z}. O

Definition and Remark 3.6. A topological space X is called simply connected if it

is path-connected and if one the following equivalent conditions is satisfied.

(i) Any two paths 7, d: [a,b] — X with the same startpoint and the same endpoint are
homotopic to each other.

(ii) Every loop in X is null-homotopic.

(iii) Any two loops in X are loop homotopic.

Proof. “(i) < (ii)”: Remark [3.4] (5).
“(ii) < (iil)”: Remark [3.4] (7). O

Remark 3.7. Let X and Y be topological spaces, f: X — Y a homeomorphism. Then
X is simply connected if and only if Y is simply connected.

Proof. Symmetry in X and Y = It suffices to show: “X simply connected = Y simply
connected”: Let d: [a,b] — Y be a closed path. Then v := f~!1o04: [a,b] = X is a
closed path and hence there exists a homotopy to the constant path H: v ~ €;,, where
xo :=y(0) =~(1). Then fo H: 0 ~ ¢y, where yg := 6(0) = 6(1). O

Definition 3.8. Let V be an R-vector space. A subset S C V is called star-shaped
(German: sternformig), if there exists a point xg € V' such that for all z € V one has

{xo+t(x—z9); 0<t<1}CS.

(The left hand side is the line segment from xg to x.) Then z is called a star center
(German: Sternzentrum).

Remark 3.9. Let V be a finite-dimensional R-vector space and let ) # X C V be a
subspace. Then

X convex = X star-shaped = X simply connected = X path-connected.

Proof. The first implication is clear: In a convex set every point is a star center. The
last implication is by definition.
Let X be star-shaped with star center z. Let v: [a,b] — X be a loop. Then

H: [a,b] x [0,1] = X, H(t,s) =z 4+ s(y(t) — )

is loop homotopy of v and ¢, in X. O
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Example 3.10.

(1) Let V be finite-dimensional R-vector space, | - | be anorm on V, vg € V, r € R,
Then B,(vg) ={v €V ; |v—wg| <r} is convex and hence simply connected. In
particular: V is simply connected.

(2) C\{z € R; z <0} is star-shaped with star center 1 and hence simply connected.

(B) Homotopy invariance

Notation: In this subsection let W = R", U C V := R™ be open and w: U —
Hompg (V, W) a continuously differentiable W-valued 1-form on U.

Lemma 3.11 (Poincaré lemma, local version). Let U C R™ be star-shaped, let
w: U — Homg (V, W) be closed. Then w is exact.

Proof. After a possible translation, we may assume that the star center is 0 € R™ (to
simplify the notation). Let w = Y, f;dz’ with f;: U — W a Cl-map. Define

1 m
F:U—W, F(z) = / (Z fz(tx)xz> dt, x=(x1,...,2m) € U.
0 i=1

This is well-defined because {tx ; 0 <t <1} CU forall z € U.
We claim that dF' = w. We have to show that 37}; = fjfor j =1,...,m. As the map

(t,x) — >, fi(tx)z; is C1, we may interchange integral and derivative. Hence:

1 m
Sf:m:/(; aij(ﬁ(tac)wﬁ) dt
0 \i=

0 0

1
O [ p () dt + £, (1) \; _ / £,(t) dt
0 0

:f]'(qj)v

where (*) holds by partial integration because

X1

0 chain rule of; of; = of;
gttt @ (B ) || = agten. O

b
ox
m i=1

Tm
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Theorem 3.12 (Homotopy invariance). Let w be closed. Let v,0:[0,1] — U be
piecewise C'-loops that are loop-homotopic. Then

/-

In the proof we will use the followint notation. For z,y € V let Z,y be the path
[0,1] = V, t — x + t(y — =) (the line segment from z to y). More generally set for
Tl T €V

Tlyeoeyp :=T1,X2 " «oo " Lp—1,Tp.
Such paths are called piecewise affine linear.

Proof. Choose a norm |- | on V. Let H: [0,1] x [0,1] — U be a loop homotopy from
v tod. (i). As H([0,1] x [0,1]) is compact, there exists € > 0 such that

|H (s, t) —y| >¢ Y (t,s) € la,b] x [0,1],y € V\ U.

(ii). As [0,1] x [0,1] is compact, H is uniformly continuous. Hence there exists § > 0
such that

*) [t—t]|<d,]s—s|<d = |H(ts)—H{, )< g
Choose 0 =t) <t; <---<tp=1land 0 =59 < 51 <--- < s =1with [t; —t;_1] <§
for all j and |s;; — sp—1| < 6 for all k. Set A;j := H(t;,sx) (= Aok = Apm i for all k)
and define piecewise C'-loops

Y= Aok, A1k Amki

for 0 <k <.
(iii). For all 1 < j < m, 0 < k <[ define piecewise C'-loops

ik = A 11, Aj—1 b, Ajs Aj -1, Aj_1 k-1

The image of o, is contained in Be(A;_1 1) by (*), and B.(A;_1x—1) is a convex

set which is contained in U by (i). Therefore the Lemma of Poincaré (Lemma [3.11])

implies that fa_ LW = 0. Therefore the integral of w over the following paths are equal
75

Yk—1,
o1k Aok—1, A1 k-1 02k - At p—1, 4261 -+ Ok - Am—1 k-1, Amk—1,
Ao k-1, Aok Yk - Amks Am k-1,
V-
Therefore we obtain f% w= [ w.

(iv). In the same way as in (iii) one can prove that fyw = f% w and f& w= [, w O
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Theorem 3.13 (Poincaré lemma, global version). Let U C R™ be open simply
connected. Let w: U — Homg(V, W) be a continuously differentiable W -valued 1-form
on U. Then

w closed & w ezact.

Proof. By Theorem it suffices to show that for any piecewise C'-loops 7 one has
) / w=0.
v

But as U is simply connected, v is null-homotopic, i.e., v ~ &, where = 7(0). Hence

Theorem [3.12] shows
/ w = / w=0. O
¥ ez

Corollary 3.14. Let w: U — Hom(V, W) be closed. Let v,6: [a,b] — U be homotopic
piecewise C'-paths in U. Then

Ju=[w

Y

)

Proof. v~ = ~ -6 null-homotopic. Hence:

Zw_é/w:/wo. m

v-6~

Remark and Definition 3.15. The proof of Theorem shows that every path
7y (not necessarily piecewise C') in U is homotopic in U to a piecewise affine linear
path 4 (which is in particular piecewise Cl)E| This allows us to define for every path
v: [a,b] = U and for every closed 1-form w on U:

-l

This is independent of the choice of 4 by Corollary

3Indeed, the proof shows that for every path -y there exists a piecewise affine linear path To,..., &%
with zo = v(0) and x = (1) such that v can be written as vy -+ - - ~r (up to reparametrization which
we may do because Remark shows that a reparametrized way is homotopic to the original one)
and such that for all ¢ = 1,...,k the images of T;_1, z; and ~; are contained in a convex open subset
B; which is contained in U (in fact, we may even assume that z; = v;(1) but we don’t need this in
the sequel). Let o¢ := €4, and oy := 7;(1),z; for ¢ = 1,...,k. Then o} = €,,. The paths v; - 0; and
0i—1+Ti—1,T; are then contained in B; and hence are homotopic. Hence induction shows that

o4 IR Yi O X200 T, L1 Ti—1,Ls
for alli =1,...,k and in particular
r)/zf)/l ..... ryk.gwk :Exo c Lo, L1t Th—1,LTk-
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(C) The fundamental group
Definition 3.16. Let X be a topological space, x € X. Define
m1(X,2) = {7: [0,1] = X ; 7 path with 4(0) = 7(1) = z}/ =,

i.e., m(X,x) is the set of homotopy classes [7] of closed paths « starting (and ending)
in . Define a multiplication on m (X, x) by

(V][6] := [v - d].

By Remark this is well-defined and yields a group structure on 7;(X,z). The
neutral element is [e;] and the inverse of [y] € m (X, z) is [y7].
In the sequel we simply write ~ instead of [y] for elements in 71 (X, x).

Remark 3.17. Let X be a path-connected topological space, z,y € X. Choose a path
o from x to y. Then

: m(X,x) = m(X,y), Yo -y-o

is an isomorphism of groups: Remark shows that ¢ is well defined and that for
7,7 € m (X, x) one has

e(VNe(y) =0y 00" A ooy ey oo vy o= 0(r).
Hence ¢ is a group homomorphism. An inverse is given by § — o -6 -0~

Example 3.18. A path-connected topological space X is simply connected if and only
if m1(X,x) =1 for all (equivalently, for one) x € X.

Example 3.19. For n € Z let 7,: [0,1] — C*, ~,(t) = exp(2mint). We will see in
Section [8 that
Z — m(C*,1), ne Y

is an isomorphism of groups.

In general, 71 (X, ) is not an abelian group (e.g., if X = R?\ {P, Q} for P # Q points
in R?).

4 Holomorphic 1-forms

(A) Complex path integrals

We now consider C-valued 1-forms on open subsets U of the 2-dimensional R-vector
space C. As usual we denote the coordinate function Re: C — R by z and Im: C - R
by y. Thus every C-valued 1-form on U is of the form

w = fydx + fydy
for functions f, f,: U — C.

Notation: Let U C C open, f: U — C a map.
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Remark and Definition 4.1. Let f: U — C be continuously real differentiable.
Recall that

) &= awt %

T+ 5,

For instance let z: U - C, z +iy— x+ iy and z: U — C, x + iy — = — iy. Then
dz = dz + idy, dz = dx — idy.

Hence we can rewrite (*) as follows.

e of .of 1 /0f 8f

If we define the Wirtinger derivatives

of _1(of _,of\. of _L1(of ,of
3, =3 (&C—ay).U%C, 82'_2(8x+ 8y> U —C,

then (**) can be written

f of .
dz + a_d
Proposition 4.2. Let f: U — C be continuously real differentiable. The following
assertions are equivalent.
(i) f is holomorphic.
(i) % =o.
(iii) The 1-form fdz is closed.
In this case one has for the complex derivative

of
0z’

df—a

(4.2.1) =
and hence df = f'dz.

A similar statement holds also for holomorphic maps f: U C C™ — C".
Proof. “(i) < (ii)”: We have % = Rel)Himml) and similar for %5 Hence:

ox
of of _ 8f
5_0@8:1: 8y

o ORe(f) _ Olm(f) Olm(f) _ _ ORe(f)

dy and ox - oy

ox
f holomorphic.
“(ii) « (iil)”: We have:

fdz = fdx +ifdy closed & — of _ 8f
oy 83:
o of
=0.
82
Finally (4.2.1)) follows from (1.12.3)) and (1.12.1). O
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Definition and Remark 4.3. Let f: U — C be holomorphic. A holomorphic prim-
itive of f (German: holomorphe Stammfunktion von f) is a holomorphic function
F: U — C such that F/ = f.

If G: U — C is a second primitive of f, then FF — G: U — C is locally constant

(Proposition [1.15]).

Remark 4.4. Let f: U — C be holomorphic. Then fdz is exact if and only if there
exists a holomorphic primitive F' of f (Proposition . In this case one has dF' = fdz
(4.2.1).

Remark 4.5. Let 7: [a,b] — C be a Cl-path (a,b € R, a < b) and let f: {y} — C be
continuous. Then

b
/ﬂm@@/}wwmwwm+wwwﬂmeMt
’y a

b
:/fwwwwww

Example 4.6. Let zo € C, let r € R°?, n € Z. Let v,: [0,1] — C, y,(t) := 20 +
rexp(2mint). Then we have

1

1 1 . , .
dz = | —————=2minrexp(2mint) dt = 2min.
z— 2 rexp(2mint)
Tn 0

In particular:

1
(4.6.1) / dz = 2mi.
Z — 20
9By (z0)

Remark 4.7. Let f: U — C be holomorphic. As fdz is a closed 1-form we can use
Remark B.15] to define

/ fdz

2t

for every path ~: [a,b] — U (not necessarily piecewise C!).

Definition and Remark 4.8. Let ~: [a,b] — U be a piecewise C!-path (a,b € R,

a < b). Then
b

wa:/WﬂwMt

a

is called the length of .
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Let f: {y} — C be continuous. Set
I£], := sup [f(v(#)] = sup [f(z)].

t€fa,b] ze{r}

ECE /b FA)A (1) dt
/u DIW (1) dt

< HnyL( )-

Remark 4.9. Assume that a holomorphic function f: U — C has a primitive F,
v: [a,b] = U a path. Then (Proposition Remark [3.15)):

/fwzﬁww»ﬂwwy

Then

(4.8.1)

Proposition 4.10. Let U C C be open, letv: [a,b] — U be a path, and let f: Ux{y} —
C be continuous. Moreover assume that for z € {~v} the function U — C, w +— f(w, z)
18 holomorphic with derivative af. Then

F:U —C, F(w)::/f(w,z)dz

18 holomorphic with

of

Fl(w) = 50 —(w, z)dz.
v
Proof. This follows from (4.2.1)) because an analogous assertion has been shown in
Analysis 2 for partial derivatives. O

(B) Cauchy’s theorem and Cauchy integral formula

Theorem 4.11 (Cauchy’s Theorem). Let f: U — C be holomorphic.
(1) Let v,9: [a,b] — U be paths. Assume that vy and 6 are homotopic or that v and &
are loops which are loop-homotopic. Then

7/fd2=é/fd2.

(2) f has a primitive if and only if

(*) /fdz =0 for every loop v in U.
v
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(3) Let U be simply connected. Then f has a primitive.

Proof. Proposition [£.2] = f dz is closed. Hence Theorem [3.12] and Corollary im-
ply (1). The equivalence in (2) follows from Theorem [2 - If U is simply connected,
Corollary implies that fdz is exact, i.e., f has a primitive (Remark [4.4). O

Remark 4.12. Let G C C be a domain. If f: G — C is a holomorphic function
that has a primitive (which is always the case, if G is simply connected), then such a
primitive F' of f can be constructed as follows. Fix wy € G and set

F:U — C, F(w) ::/fdz,
wo

where fwwo denotes the path integral over some path with startpoint wy and endpoint
w. This follows from the proof of Theorem [2.28

Remark 4.13.

(1) In general there exist holomorphic functions which do not have a primitive. For
instance f: C* — C, f(z) = 1/z has no primitive by (4.6.1)). But it has a primitive
on every open simply connected subspace of C* (see the definition of logarithms in
Section @

(2) Cauchy’s theorem shows in particular that the restriction of f to small discs always
has a primitive. Hence primitives of f always exist locally.

(3) Evenif U is not simply connected, then there exist holomorphic functions f: U — C
that have a primitive (e.g., f: C* — C, z +— 2" has for —1 # n € Z the primitive
PO n—l&-l Zn+1)

Theorem 4.14 (Cauchy integral formula, local version). Let U C C be open,

zeU and r >0 such that B,.(2) CU. Let f: U — C be holomorphic. Then for every

20 € Br(2) we have / f

BBT (2)

Proof. Let € > 0 with B.(z9) C B,(Z). By Example [3.5) 0B:(29) and 0B, (2) are loop
homotopic in C\ {zp}. Hence we obtain

S dz — 2mif(z0)

Z— 20
0B (2)
1
AGE1T / Mdz — f(20) / dz
Z— 20
835(2’0 835(20)
/ fG) = fz0) .
Z— 20

0B:(20)
e—0
— 0,

where the last line holds because |f(270| is bounded in a neighborhood of zy (f is
holomorphic in zp) and L(0B:(z0)) = 2me — 0 for ¢ — 0. O
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5 Properties of holomorphic functions I
Notation: U is always an open subspace of C.

(A) Analytic functions

Remark and Definition 5.1. Let zp € C. Recall that a complex power series in zg
is a series of the form

(*) Y an(z—z)"
n=0

with z € C and a,, € C for all n € Ny. We usually consider (*) as sequence of functions
(fn)nen, where

N
fn:C—C, zHZan(z—zo)".
n=0
Then

=>0
e R™.

5.1.1 =
( ) P~ fim sup,, |an|1/™
is called the radius of convergence of (*). We have:

(1) For z € C with |z — 29| > p the power series (*) does not converge.

(2) The power series (*) converges absolutely and locally uniformly on B,(zp) (more
precisely: the series (*) converges absolutely for all z € B,(zp), and the sequence
(fN)nNen, converges locally uniformly on B,(zp)).

The power series (*) is called convergent, if p > 0.

Definition 5.2. Let f: U — C be a map.

(1) Let zg € U. Then f is called analytic in 2y, if there exists a convergent power series
Yot gan(z — 20)"™ such that f(z) = > 7 jan(z — 20)" for all z in a neighborhood
of zp.

(2) f is called analytic if f is analytic in zq for all zp € U.

Proposition 5.3. Let f(z) =Y " jan(z — 20)" be a power series, p > 0 its radius of
convergence. Then f is an analytic function on B,(zo).

Proof. See Analysis 1. O

Remark 5.4. If f is analytic on an open subset U, it does not mean that there exists
a power series ) an(z — 20)" such that f(z) = >, an(z — 29)" for all z € U. The
function f can only locally expressed as a power series.

For instance, consider f: C* — C, f(z) := 1/z. If there existed a power series
Y onan(z — 20)" such that f(z) = > an(z — 20)" for all z € C*, then this power
series would have to converge on a circle B whose closure contains C*. Hence B would
be C. But then f could be extended continuously (even analytically) to the function
f:C=c, f(z) = > an(z — 29)", which is not possible because lim,_,o f(z) does not
exist in C.
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Verbatim as in Analysis 1 one shows the following proposition.

Proposition 5.5. Let f(z) = > .2 an(z — 20)" be a power series, p its radius of
convergence.

(1) The power series Y oo qnan(z — 20)" 1 has also p as radius of convergence.

(2) The function f: B,(z0) — C is infinitely often complex differentiable (in particular

holomorphic) and
= Z nan(z — z9)" !
n=1

for z € By(20).
(3)

(n)
o, = 1(20)
n!
Example 5.6. (1) The power series exp(z) = > 7 2 n, has radius of convergent oo.
Hence
exp: C - C

is a holomorphic function, called the exponentional function. We have

o0

exp’( i nﬁ Z %z" = exp(z).

n=0
1
=1

(2) The power series

3

00
COS E

o0
2n+1
sin(z Z 2n + 1)!

have radius of convergence co and therefore define holomorphic functions cos: C —
C and sin: C — C. One has

sin’(z) = cos(z) and cos'(z) = —sin(z)

for all z € C.

(B) Holomorphic functions are analytic

Lemma 5.7. Let v: [a,b] — C be a path, let g: {y} — C be continuous. Assume one

of the following hyoptheses.

(a) The path vy is piecewise C1.

(b) There exists an open neighborhood W of {~v} and a holomorphic function g: W — C
such that g,y = g-
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Define

9(2)
:C C = dz.
pevm-c fw= [ 2
v
For zg € C\{~v} we set p := dist(z0, {7}) := inf.c(y) d(z, 20). Then the function f|p, .,
has a power series expansion in zg with

(5.7.1) £ (z) = n!/(z_g(z?)mdz.

Proof. As {~} is compact, we have p > 0.

We claim that for all 0 < 7 < p the restriction f|p, (.,) has a power series expansion
in zg (then the claim shows that the power series expansion has radius of convergence
> r for all » < p and hence it radius of convergence is > p).

Under the assumption (b) we may replace v by a piecewise C'-path that is homotopic
toy in W\ B,(20). This does not change f|p, (s, by Cauchy’s theorem Thus we
may assume that 7 is piecewise C!, i.e. we are in case (a).

For z € {y} and w € B,(z9) we have |w — 2| < |z — 20|. Hence we may write

1 1 1

w—20
z2—20

zZ—w z2—201—

o0

1 w—20\"
- ()

=0

Z e
(z — zo)"t!

and the series converges locally uniformly as a function in z. Moreover, g is bounded
on {7} and therefore » g(z)% converges also locally uniformly. Hence we

obtain
[ (W= 20)"
fw = | 3 ala g d

and f has a power series expansion in zy. By Proposition we then know that
™ (20) = nlay,. O

Theorem 5.8. let f: U — C be holomorphic, z9g € U, and let R € R such that
Br(z0) CU. Then J|Br(z0) has a power series expansion

2)=> an(z—z)"
n=0
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such that for all n € Ng one has

(n) (4 z
(5.8.1) o= 20 _ L / (Z_fioinﬂdz,

n! 271
dB, (%)

where B,(%) is any disc such that z € B,(2) and B,(3) C U. Furthermore one has

552 o < Voo
L

Proof. By the Cauchy Integral formula (Theorem [4.14]) one has

1
[ e,
211 zZ—w
8B,(2)

for all w € B,(2). Choosing r = R and Z = zj and applying Lemmanto ’y 8BR(20)
shows that f has a power series expansion in zy on Bgr(zp). Applying (5.7.1) to v =

OB,(Z) we obtain (5.8.1)).
It remains to show 1' Let v := 0B,(2). Then

f(z)

_ 3\n+1
-2 ||,

1 1 I/
L(y) = M @) gr2m = = -

anl < 5=

Corollary 5.9. U C C open, f: U — C function. Then the following assertions are

equivalent:

(i) f is holomorphic.

(ii) f is infinitely often complex differentiable and all higher derwatives f are holo-
morphic.

(iii) f is analytic.

Proof. “(iil) = (ii)”: Proposition [5.5] “(ii) = (i)”: Clear.
“(i) = (iii)”: Theorem [5.§ O

Corollary 5.10. Let f: U — C be holomorphic, zy € U, Y an(z — 20)" its power
series expansion in zg, and let p be its radius of convergence. Then

p=sup{re R . 3 holomorphic function f: U U By(z) with f‘U =f}

Proof. Let p’ be the right hand side. As a power series is holomorphic within its open
disc of convergense, an extension f of f to U U B,(zp) exists. Hence p < p

Conversely, let us show that p > p'. For all 0 < R < p’ we apply (5.8.2] D to f U U
By(z) = C. As f and f are equal in a neighborhood of z, we have f(™ (z0)
Hence f and f have the same power series expansion » o2 an(z — 20)"

= |/lop(z)- Then shows

(*) |an‘1/n SCl/"/R

in zo Set
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If C' = 0 this implies a,, = 0 for all n and hence p = oo and in particular p > p'.
Thus we may assume that C' > 0. Then (*) shows that for all R < p’ one has

1

P= lim sup,, |a, |1/

>R

because lim,, C'/* = 1. Hence p > /. O

Example 5.11. Let f: C\ {1} — C, f(2) := exp(z)/(z — 1). Then the radius of
convergence of the power series for f at 0 (resp. at i) is 1 (resp. v/2).
The radius of convergence of the power series for f: C\ {0} = C, z — %

29 € C\ {0} is oo (we will see that f can be extended holomorphically to 0).

at any

Corollary 5.12. Let U C C be open and let f: U — C be continuous such that

7/fdz:O

for every piecewise C*-loop v in U. Then f is holomorphic.
In fact, it suffices to take triangular loops 7 (see Exercise).

Proof. Theorem = 3 F: U — C a C'-map with dF = fdz. In particular %—g =0.
Hence F' is holomorphic with F/ = f by Proposition Therefore f is holomorphic

by Theorem O

Theorem 5.13 (Riemann extension theorem). Let U C C be open, zg € U. Let
f:U\{z0} — C be holomorphic and bounded near zy (i.e., 3¢ >0, C € RZY such that
|f(2)| < C for all z € B(20) \ {20}). Then there exists a unique holomorphic function

f:U — C with f\U\{zo} = f.

Proof. The uniqueness of f is clear because U \ {2} is dense in U. We show the
existence. After translation we may assume that zp = 0 (to simplify the notation).
As f is bounded near zy = 0, the function

F:U—C, F(z):= {f(z)z, 270

0, z=0;
is holomorphic on U \ {0} and continuous on U.
(i). Let us first assume that there exists a continuous extension f of f. Applying
Exercise 18(b to f , we see that f is holomorphic. Hence the theorem is proved under
the above additional assumption.
(ii). We can now apply (ii) to the function F' and see that F' is holomorphic. In
particular F'(0) = lim,_,( f(z) exists. Hence f can be extended to a continuous function
f on U. Using again (ii) we see that f is holomorphic. O

*Aufgabe 18(b): Let U C C be open, f: U — C continuous such that fiu\r is holomorphic. Then
f is holomorphic.
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(C) Uniform limits of holomorphic functions

Theorem 5.14 (Weierstraf3’ theorem of convergence). Let U C C be open,

(fk: U — Clren a locally uniformly convergent sequence of holomorphic functions.

Set f:=limg_ oo fi.

(1) f is holomorphic.

(2) For (agl n € N, the sequence of n-th derivatives (f,gn))k converges locally uniformly
to f\".

Proof. It suffices to show that for all 29 € U there exists an € > 0 such that f|p_(.,)

is holomorphic and such that ( f,in)‘ Bs(Zo)>k converges locally uniformly to f (”)‘ Be(z0)-
Thus we may assume that U is convex and in particular simply connected.

(1). We know that f is continuous by Analysis 2. By Lemma it suffices to show
that f,y fdz = 0 for every loop v in U. As fi is holomorphic and as U is simply
connected, we have f,y frdz = 0 for all loops v and all k£ (Cauchy’s theorem . As
fv() commutes with locally uniform limit (Proposition , this implies f,y fdz=0
for every loop v in U.

(2). Let zp € U. Choose R > 0 so small such that Br(z9) C U and such that fj
converges uniformly to f on Br(zp) (possible because fr — f locally uniformly). Let
e > 0. Then there exists kg € N such that |fx(z) — f(z)| < ¢ for all z € Br(zp) and
for all k > ko. For all w € Bp/s(20) we then have |w — z| > R/2 for all 2 € Bg(20)-
Therefore we find for w € Br/s(20) and for all k& > ko:

7 (w) = £ ()] = [(f = fir) ™ (w)]
ot ORI O
(

270 z —w)ntl
0BR(20)
n! €

< ——_R2m =
_27T(R/2)”+1R7T eC,

where C'is a constant not depending on ¢, k, or on w. This shows that ( f,gn)) L converges

locally uniformly to f(. O

Remark 5.15. Note that this is totally different from the real setting. There Weier-
stra} approximation theorem tells us that every continuous function on [a,b] is the
uniform limit of polynomial functions (= uniform limits of polynomials are not neces-
sarily differentiable).

Nevertheless one can ask whether every holomorphic function f is a uniform limit of
polynomials. More precisely: Let K C C be compact.

Question: Does there exist for every f that is holomorphic on some open neighborhood
of K a sequence of polynomial functions converging uniformly on K to f7

In general this is certainly not true: As polynomials p are holomorphic functions on
C and C is simply connected, we have fvpdz = 0 for every loop 7. As f7 commutes
with uniform limit, we also should have fy fdz = 0 for every loop in K. Thus we
at least need K to be simply connected. In fact one can show that in this case the
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above question has indeed a positive answer (Runge’s theorem, see e.g. John Conway:
Functions of One Complex Variable, 2nd edition, Springer (1978), Chap. VIII).

(D) Liouville’s theorem

Definition 5.16. A holomorphic function on C is called entire (German: ganz).

Corollary 5.17. Let ¢, M € RZ° and let f be an entire function. Assume that
1oy < ME°

for R large enough (i.e., 3 Ry € R>? such that | floppo) < MRS for all R > Ry).
Then f is a polynomial of degree < c.

Proof. Let f(z) =7 anz" be the power series expansion of f on zp = 0. By (5.8.2)
we have for all n > ¢

MR Rooo
n| < 0
an] < 22
U
Corollary 5.18 (Liouville). A bounded entire function is constant.
Proof. Corollary with ¢ = 0. O

Corollary 5.19 (Main Theorem of Algebra). C is algebraically closed.

Proof. Let p: C — C, p(z) := apz" + -+ a1z + aop, a; € C, ay, # 0 be a non-constant
polynomial function (i.e., n > 1). We have to show that p has a zero. Assume that
p(z) # 0 for all z € C. Then f = 1/p is an entire function. Moreover, for every

sequence (zy), in C with lim, |2,| = oo one has lim,, |p(z,)| = |an||2zn| = co0. Hence f
is bounded. Contradiction to Corollary O

(E) Identity theorem

Lemma 5.20. Let f(z) =Y -7 qan(z — 20)" be a non-zero power series with radius of

convergence p > 0. Let m := ord,,(f) :==inf{n € Ny ; a, #0}.

(1) Then f(z) = am(z — 20)™(1 + h(z)), where h(z) is a power series of the form
h(z) = bi(z — 20) + ba(z — 20)% + ... with radius of convergence p.

(2) There exists 0 < r < p such that f(z) # 0 for all z € By(20) \ {#0}-

Proof. (1).

f(2) = am(z — 20)™ + amy1(z — 20)" T + ...
= am(z — 20)™(1 + b1(z — 20) + ba(z — 20)% + ...).

[V/k = limsup,, |a,|"/" (because

with by = amak/am for k € N. Then limsupy, |by
limy, |an,|'/* = 1). This shows (1).
(2). As h: B,(z9) — C is continuous and h(zg) = 0, there exists 0 < r < p such that

|h(2)| < 1 for z € B,(z9) and hence f(z) = an(z — 20)"™ (1 + h(z)) #0 for z # z9. O
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Proposition 5.21. Let U C C be open, f: U — C holomorphic. Then

supp(f):={z€U; f(z) #0} (closure in U!)

1s open and closed in U.

Proof. We only have to show that supp(f) is open in U. Let zg € supp(f). Then there
exists no zo € W C U open with fjyy = 0. Thus Lemma shows that there
exists 7 > 0 with f(z) # 0 for z € B,(z0) \ {20} and hence B, (z9) C supp(f). O

Definition 5.22. Let X be a topological space. A subspace S of X is called discrete,
if the induced topology is the discrete topology (< Vs € S 3s € U C X open such
that U NS = {s}).

Sometimes “discrete” is defined differently. With this definition the subspace { 1/n ; n €
N} of C is discrete.

Proposition 5.23. Let G C C be a domain. Let f: G — C be holomorphic with f # 0.
Then {z € G ; f(z) =0} is a discrete subspace of G.

Proof. Let zyp € G with f(z9) = 0. As f is analytic, there exists by Lemma
either > 0 such that f(z) # 0 for z € B, (z0) \ {20}, or f = 0 in some neighborhood
of zp.

Assume the latter case occurs, i.e. zg ¢ supp(f). As G is connected, Proposition
shows that supp(f) = 0 and hence f = 0; contradiction. O

Theorem 5.24 (Identity Theorem). Let G C C be a domain. Let f,g: G — C be

holomorphic. Then the following assertions are equivalent.

(i) f=g

(ii) There exists a non-discrete subspace S C G such that f(z) = g(z) for all z € S.

(iii) There exists a point zg € G such that f"™(z9) = g™ (20) for all n € Ny (in other
words: f and g have the same power series expansion in zp).

Proof. “(i) = (iii)”: clear.

“(iii) = (ii)”: (iii) implies that f and g have the same power series expansion in zy and

hence are equal on some neighborhood of zj.

“(ii) = (i)”: Apply Proposition [5.23]to f — g. O

6 Special functions

(A) Extension of real analytic functions

Corollary 6.1. Let G C C be a domain with GNR # (). Let f,g: G — C be holomorphic
with fienr = g|jcrr- Then f=g.

Proof. G NR is non-discrete. O

Remark 6.2 (Exponential function).
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(1) The exponential function exp: C — C is the unique holomorphic function f: C — C
such that f(z) = e” for all x € R.
(2) For z,w € C one has
exp(z + w) = exp(z) exp(w).
Hence exp(z) # O for all z € C and exp: (C,+) — (C*, ) is a group homomorphism.
(3) exp: C — CX is surjective: For all z = rexp(ip) € C* (r € R*? ¢ € R) there
exists w € C with exp(w) = z (take w = s + iy with s € R such that exp(s) = 7).
(4) Let 2,z € C. Then exp(z) = exp(2) < 3 k € Z with Z = 2wik + z. In particular:

ker(exp) :=={z € C; exp(z) =1} =2miZ = {2nmik ; k€ Z}.
Proof. Write z = x + iy, Z = + iy with z,y, %,y € R. Then

dk € Z : Z = 2mik + z = exp(Z2) = exp(2mik) exp(z) = exp(z)
= exp(Z) exp(ig) = exp(x) exp(iy)
polar dgcomp. exp(Z) = exp(z), Ik €Z :y=2rk +y
=dke€Z:z=2mk+ 2. O

Hence exp yields an isomorphism of groups C/(2miZ) = C*.

Remark 6.3 (Sine and Cosine). The holomorphic functions z + sin?(z) + cos?(2)
and z +— 1 on C are equal on R sin?(z) + cos?(z) = 1 for all z € C.

(B) Logarithm

Proposition and Definition 6.4. Let G C C be open and simply connected and let

f: G — C be a holomorphic function with f(z) # 0 for all z € G.

(1) There exists a holomorphic function Ly: G — C such that expoLy = f. Such an
Ly is called a branch of the logarithm of f on G.

(2) If Ly and ~INLf are two branches of the logarithm of f on G, then there exists k € Z
such that Ly(z) = L¢(z) + 2mik for all z € G.

(3) For every branch Ly of the logarithm of f one has for z € G:

Proof. (3). If Ly is a branch of the logarithm of f, we have for z € G

f'(z) = exp'(Ly(2)) L (2) = f(2) L (2).

(1). The function G — C, z — f’(z)/f(z) is holomorphic. Hence there exists a
primitive Ly: G — C by Cauchy’s theorem Then

( f(z) )’:f/(z)exp(Lf(z))—f(z)L}(Z)exp(Lf(Z))
exp(Lf(2)) exp(Ly(2))?

=0.
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Hence there exists a € C* such that expoL; = af. Replacing L; by Ly + 3, where
B € C with exp(8) = a~!, we obtain a branch of the logarithm of f.

(2). For z € G we have exp(Ls(2) — Ls(2)) = f(2)/f(2) = 1. Thus L; — Ly
is a continuous (even holomorphic) function G — S := {2mik ; k € Z} C C by
Remark . As S is discrete and G is connected, L ¢ — Ly is constant. ]

Applying this proposition to f(z) = z we obtain:

Corollary 6.5. Let G C C be open and simply connected with 0 ¢ G.

(1) There exists a function L: G — C (called a branch of the logarithm) such that
exp(L(z)) = z for all z € G.

(2) If L,L: G — C are two branches of the logarithm, then there exists k € 7 with
L(z) = L(z) + 2mik for all z € G.

(3) One has L'(z) = 1/z for all branches L of the logarithm.

Remark and Definition 6.6. Let G C C open and simply connected with 0 ¢ G.
Assume that G N R>? is a non-empty interval. Then there exists a unique branch of
the logarithm G — C such that its restriction to G NR>Y is the logarithm log defined
in Analysis 1.

This branch is called the principal branch of logarithm on G.

Proof. The uniqueness follows from Corollary Choose wg € G NR>? and define a
primitive of 1/z (Remark [4.12)) by
w
1
L:G—C, wn—>/dz—log(wo),
z
wo
where f;‘; denotes the path integral over some path in G with startpoint wy and end-
point w (well defined because G is simply connected and hence all such paths are homo-
topic). For z € GNR>Y we may take the line segment from wq to = (because GNR>? is
an interval) and obtain indeed the one-dimensional integral L(z) = fio 1/t dt —log(wo)
and hence the usual logarithm. Moreover we have exp(L(z)) = x for all z € G N R>?

and hence exp(L(z)) = z for all z € G by the identity theorem. Thus L is indeed a
branch of the logarithm. O

Example 6.7. It is standard to consider
G:=C\{z€R; 2<0}={re¥cC;reR’ r<p<n}
Then the principal branch of logarithm on G is given by

(6.7.1) log: G — C, re —  log(r) + ip.
——

usual real log
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(C) Powers and roots

Notation: In this subsection let G C C be open and simply connected, f: G — C
holomorphic with f(z) # 0 for all z € G.

Definition 6.8. Let ¢ € C. A holomorphic function of the form
G — C,z — exp(qLy(2)),
where L;: G — C is a branch of the logarithm of f, is called a g-th power of f.
It is easy to see that if h is a ¢-th power of f (¢ € C*), then f a (1/q)-th power of h.

Remark 6.9. Let n € N and let ¢ = 1/n. Then a ¢-th power of f is also called an
n-th root of f.

Let r¢,,7fn: G — C be two n-th roots of f.

(1) There exists k € {0,...,n — 1} such that

2mwik

Tin(2) = exp(——)rsn(2)

for all z € G (by Proposition @))-
(2) For all z € G we have

exp(w)";exp(nw)

(1) (2) = exp(-Ly(2))" exp(Ls(2) = £(2).

and L F(2)
r}vn(z) = ﬁmrf,n(z).

7 Properties of holomorphic functions 11

(A) Biholomorphic maps and local description of holomorphic func-
tions

Definition 7.1. Let U, U’ C C be open.

(1) A bijective map f: U — U’ is called biholomorphic or conformal if f and f~! are
holomorphic.

(2) A holomorphic function f: U — C is called locally biholomorphic if for all z €
U there exist open neighborhoods z € W C U and f(z) € W' C C such that
fiw: W — W' is biholomorphic.

Remark 7.2. Let U, U’ C C be open.

(1) A biholomorphic map f: U — U’ is a homeomorphism.

(2) The Inverse Function Theorem (Theorem shows that a holomorphic function
f: U — C is locally biholomorphic if and only if f/(z) # 0 for all z € U.

(3) exp is locally biholomorphic on C (because exp’(z) = exp(z) # 0 for all z € C) but
not biholomorphic.
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Theorem 7.3. Let U C C be open, f: U — C holomorphic. Let zg € U and let
f2)=ao+ Y anlz—2)",  withm €N and a,, # 0

Then there exist open neighborhoods 0 € W C C and zg € W C U and a biholomorphic
map p: W — W' such that f(p(w)) = ag +w™ for allw € W.

In other words: Locally, after a change of charts w — @(w),f is of the form f(w) =
ag + w™.

Proof. Replacing f by f—ag and z by z+ 25 we may assume that ap = 0 and zg = 0. We
are looking for open neighborhoods W and W’ of 0 and a biholomorphic ®: W' — W
such that f(z) = ®(z)™ for 2 € W (then take ¢ := ®~1). We have

f(2) = amz"g(2),

where g: U — C is holomorphic with ¢(0) = 1 (Lemma (). Hence we can find
0 € V! C U open such that g(z) # 0 for all z € V/ and such that V' is an open disc
and in particular simply connected. Then by Remark there exists a holomorphic
function g: V! — C such that §g" = g. In particular g(0) # 0. Moreover let a € C*
with ¢™ = a,,. Then

f(z) =(®(2))™, with ®: V' — C, ®(2) = azg(z).

Moreover ®'(0) = ag(0) # 0. Hence by Theorem [1.9| there exist 0 € W’ C V' open and
0 = ®(0) € W C C open such that ®: W’ — W is biholomorphic. Set ¢ := &~ O

Corollary 7.4. Let U C C be open, f: U — C holomorphic. Assume that f is injective.
Then'V := f(U) is open in C and f: U — V is biholomorphic (in particular: f'(z) #0
forallz € U).

Proof. As f: U — V is bijective, there exists an inverse map g: V — U. It suffices
to show that f/'(z9) # 0 for all 29 € U (= f locally biholomorphic = V open and g
holomorphic). Write f(¢(w)) = ap+w™ as in Theorem [7.3] A look at the power series
expansion f(z) =Y <qan(z — 20)" shows that f’(z9) # 0 if and only if a; # 0, i.e., if
and only if m = 1. As ¢ is injective, w — ag + w™ is injective on a neighborhood of 0.
Hence m = 1 and therefore f'(z) # 0. O

Example 7.5. Let
log:G::{rew; TGRO,—TF<§0<7T}—>(C7 rewr—>log(r)+ig0

be the principal branch of logarithm on G (Example [6.7.1). Then log is injective
(because expolog = idg) and hence log is a biholomorphic map from G onto the
vertical strip { z € C ; —m < Im(z) < m} by Corollary
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(B) Open Mapping Theorem

Definition 7.6.

(1) Let X and Y be topological spaces. A map f: X — Y is called open if f(U) is
open in Y for every open subset U of X.

(2) Let X be a topological space. A basis of ofXE] is a set B of open subsets of X such
that every open subset of X is a union of subsets in B.

Remark 7.7.

(1) Let (X,d) be a metric space and let X = (J._; U; with U; C X open. Then

el
B:={B.(x); z0o € X,r € R°°,3icI: B.(z0) CU;}

is a basis of the topological space X.
(2) Let f: X — Y be a map of topological spaces X and Y, let B be a basis of X. If
f(V)isopenin Y for all V € B, then f is open.

Proof. Let U C X be open. Then U = J,c; U; with U; € B and hence f(U) =
Uicr f(U;) is open in Y, -

(3) The composition of two open maps is again open.
(4) Every homeomorphism is open.
(5) Every locally biholomorphic map is open.

Theorem 7.8 (Open mapping theorem). Let G C C be a domain and let f: G — C
be holomorphic and not constant. Then f is open.

Proof. By Remark it suffices to check that for all zg € G there exists zg € U C G
open such that f(B,(20)) is open for all r € R>Y with B,.(z9) € U. Note that the
Identity theorem implies: f not constant = f|y not constant for §) # U C G open.
Thus by Theorem we may assume that f is of the form w — zy + w™ for some
m € N. But this map clearly sends open discs to open discs. O

(C) Maximum modulus principle

Recall: A subspace I C RZ? is open and connected if and only if I is of the form
I = (a,b) for real numbers 0 < a < b or of the from I = [0,b) for b € R>Y.

Example 7.9.

(1) Let X and Y be topological spaces and endow X x Y with the product topology.
Then the projections X xY — X, (z,y) = xand X XY — Y, (z,y) — y are open.

(2) Let (V.| -|) be a normed R-vector space. Then |- |: V — R=? is open.

Proof. Remark = It suffices to show that the image of B,.(v) under |- | is
open in R=Y for all v € V and r € R>?. But this image is (Jv| —7, |v|+7)NR=Y. O

(3) In particular: The maps C — R, z — Re(z) and z — Im(z) are open. The map
C — R2% 2 |2| is open.

>This notion has nothing to do with the notion of a basis of a vector space.
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Theorem 7.10 (Maximum/Minimum modulus principle). Let G C C be a
domain, f: G — C a holomorphic function. Assume that there exists zg € G and
zo € W C G open such that one of the following conditions hold.

(@) |f(2)] < |f(20)| for all z € W (i.e. |f] has a local mazimum in zp).

(b) [£(2)] > [£(z0)] for all = € W and f(z0) £ 0.
Then f is constant.

Proof. Assume f is non-constant. Then f is open (Theorem . As|-|: C = R2"is
also open (Example @), | f|(W) is open in R=?. But under assumptions (a) or (b)
the point | f(zo)| € | f|(W) is not an inner point. Contradiction. O

Note: Under assumption (b) one has to exclude |f(z9)] = 0 because sets of the form
[0,b) are open in R=0.

Corollary 7.11. Let G C C be a bounded domain, let G be its closure. Let f: G — C

be a continuous function such that f|c is holomorphic. Then

jtelglf(z)l delgglf(Z)\,

i.e., |f] attains its mazimum on OG.

Proof. If f is constant, the assertion is trivial. Hence assume that f is non-constant.
As @ is bounded, G and OG are compact. Therefore |f| attains its maximum on G.
But this cannot be in G if f is non-constant (Theorem [7.10)). O

Remark 7.12. As Re: C — R is open (Remark , the same argument as in the
proof of Theorem shows: G domain, f: G — C holomorphic. Assume there exists
20 € G such that Re(f(z9)) > Re(f(z)) for all z € G or that Re(f(z20)) < Re(f(z)) for
all z € G. Then f is constant.
Similar for the imaginary part.

8 Homology and the winding number
(A) Digression: Covering Spaces
Notation: In this section, X and X always denote Hausdorff topological spaces.

Definition 8.1. )
(1) A continuous map p: X — X is called a covering if for all z € X there exists
x € U C X open such that

(8.1.1) pL(U) = |_| U; disjoint union, I # () some index set
i€l

for open sets U; C X such that P, U; — U is a homeomorphism for all i € I.

(2) A covering p: X — X is called a universal covering if X is simply connected.

Remark 8.2.
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(1) A covering is always a surjective map: For every U as in and for every y € U
we have a bijection p~!({y}) <> I.

(2) The map f: C — C, z + 22 is surjective, but there exists no open neighborhood
U of 0 such that #f1({z0}) = #f1({0}) =1 for all zo € U.

Example 8.3.
(1) The function R — S ={z€ C; |2| =1}, x = *™® is a universal covering.
(2) The function exp: C — C* is a universal covering.

We will only prove (and use) (2). (1) is left as an exercise.

Complex analytic proof. As C is simply connected, we only have to show that exp is a
covering. For y € C* let V C C* be simply connected domain withy € V. Let L: V —
C be a branch of the logarithm (i.e. exp(L(z)) = z for all z € V). Then an arbitrary
branch of the logarithm on V' is given by Ly := L+ 2wik for k € Z (Corollary . Set
Uy := Lg(V). Then Uy is open in C by the Open mapping Theorem (7.8 Then Lj: V —
Uy is bijective and holomorphic with inverse map exp |y, : Uy — V (Corollary .
Moreover
exp (V) = | | Uk
keZ

is a disjoint union of open sets (if there exists z € Uy N U; then z = Li(exp(z)) =
Li(exp(z)) = Li(exp(z)) + 2mi(l — k) hence | = k). O

Proposition 8.4. Let p: X — X be a covering, let v: [a,b] — X be a path, and let
T € X such that p(Z) = y(a) (such & always exists because p is surjective). Then there
exists a unique path 4: [a,b] — X such that

() V(@)=  and  poy=r.
Note, that even if «y is a loop, then 7 is not necessarily a loop.

Proof. Uniqueness. Let 41 and 42 be two paths satisfying (*). Then Z := {t¢ €
[a,D] ; A1(t) = A2(t) } is non-empty. It is closed because X is Hausdorff. Moreover for
t € Z choose an open neighborhood U of p(%;(t)) as in . By continuity, 41 and
4, must map a neighborhood ¢t € W C [a,b] into the same U;. Hence pod; = po Ay
shows 41w = J2jw. This shows that Z is also open. Hence Z = [a,b] because [a, b] is
connected.

Euistence. The existence of 7 is clear if v([a,b]) C U with U as in (8.1.1]).

In general the compactness of [a, b] shows that there exist a =ap < a3 < -+ <apy =0>
such that for all j =1,...,m one has v([a;—1,a;]) C U for some U as in (8.1.1)). Hence
we can lift )4, ; q;] Successively. O
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(B) The winding number

Proposition 8.5. Let zp € C and let v be a loop in C\ {20}. Then there exists k € Z
such that ~ is loop homotopic in C* to the loop

Br: [0,1] — C*, t — zo + exp(2mikt).

Proof. We may assume that zg = 0. By Remark @ it suffices to show that every
loop v with startpoint 1 is homotopic to some [;. As exp is a covering (Example ,
there exists a unique lift 5: [0,1] — C such that 5(0) = 0 (Proposition [8.4). Then
exp(¥(1)) = 1 and hence there exists k € Z such that 4(1) = 2mik. As C is simply
connected, there exists a homotopy Hy, of 7 and the line segment o from 0 to 2wik
(ie., op: [0,1] = C, o4 (t) = 2mikt). But then exp oH is a homotopy of v and exp ooy, =
Bk O

In fact, the integer k then can be computed (by homotopy invariance of the integral)
by
1 1 1 1 TG
— dz = — dz = k.
2mt | z— 2z 2t | z— 2z
ol Bk

This leads us to the following definition.
Definition 8.6. Let «y: [a,b] — C be a path and let uw € C\ {7}. Then

1 1

21 Z—1U
v

W(y;u) : dz

is called the winding number (German: Umlaufzahl or Windungszahl) or the index of
~v with respect to w.

Note: z +— 1/(z — u) is holomorphic on the open neighborhood C \ {u} of {7}, thus
fv —L_dz is defined for every path v (Remark .

Proposition 8.7. Let «: [a,b] — C be a loop.
(1) W(~;u) is an integer for all u € C\ {~}.
(2) The function
C\f1} =2 ue W)

is locally constant (and hence constant on the path components of C\ {v}).

(3) Let G C C\ {v} be mﬁ unbounded path component. Then W (y;u) = 0 for all
ueGqG.

(4) Let uw € C and let v and § be loops that are loop homotopic in C\ {u}. Then
W(viu) = W(d;u).

51n fact, using that {7} is compact, it is easy to see that there is only one unbounded path component.
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Proof. (1). Proposition

(2). The function is continuous (even holomorphic) by Lemma and Z-valued by
(1). Hence it is locally constant.

(3). As G is not bounded, there exists for all € > 0 an u € G such that sup{1/(z —
u); z€{v}} <e. Hence W(vy;u) < eL(y). Hence W(v;u) =0 for all uw € G by (2).
(4).  Homotopy invariance of the path integral of holomorphic functions (Theo-

rem [4.11)). O

Example 8.8. Let 29 € C, r € R®Y and v = 8B, (). Then we have for u € C\ {v}:

o)1, u€ Br(20);
LR i =

(C) First Homology group

Notation: In this subsection let X be a topological space.

Definition 8.9. Let S be a set. The free abelian group generated by S is the abelian
group

75 = {n: S —=Z ;nmap s+— ng with ny =0 for all but finitely many s € S}.

Elements n € Z(%) are usual written as scgMss (a “formal linear combination”). In
practice, we skip the summands with ny, = 0 and write also n1sy + - -+ + n,s, with
n;, €7Z,s €S, reNy.

Using the notation as formal linear combinations, the addition in Z(%) is given by

Z NngS + Z mes = Z(ns + ms)s.

seS seS seS

79 is a free Z-module with basis s € S.
Instead of Z we can also take a field K and obtain a vector space K(5). (In fact, we
may take any ring R and obtain the free left R-module generated by S.)

Definition 8.10. Let C1(X,Z) be the free abelian group generated by S := C([0, 1], X),
the set of paths in X. An element I' € (X, Z) is called a I-chain in X. It is written
as' = Zv ny or simply as niyy + - - - + n,y with ;1 [0,1] = X a path and n; € Z.
We consider paths v: [0,1] — X as the element 1-v € C1(X,Z).

For T'=n1v1 + -+ + nyyy € C1(X, Z) we define

ry= U Mt

1<i<r
n; 70

Definition 8.11. (1) A 0-chain in X is an element of Co(X,Z) := ZX), i.e., 0-chains
are formal linear combinations ni1z1 + ...n,x, with n; € Z and z; € X.
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(2) Let A :={(z,y) € R?; 0 <y <2 <1} be the triangle in R? with vertices (0,0),
(1,0), and (1,1).
A 2-chain in X is an element of Cy(X,Z) := ZCAX) je. 2-chains are formal
linear combinations n1d1 + ...n,d, with n; € Z and §;: A — X continuous.

Definition 8.12. (1) Let v: [0,1] — X be a path. Define 01(v) := (1) + (—1)7(0) €
Co(X,Z). More generally, define a map

d1: C1(X,Z) — Co(X,7Z), an — Zm(%(l) —7(0)).
=1 =1

This is a group homomorphism.
(2) Let A ={(z,y) € R?; 0 <y <2 <1} as above. We describe its boundary with
3 paths:

(0A)1: [0,1] — R?, t— (t,0),
(0A)2: [0,1] = R?, ¢t (1,1),
(0A)3: [0,1] = R?,  tw (1 —t,1—1).

Let 6: A — X be continuous. Define

w

05(8) =Y 60 (0A); € C1(X,Z).
k=1

More generally, define
822 CQ(X,Z) —>01(X,Z), anélHanﬁg(él)
i=1 i=1

This is a group homomorphism.
The homomorphisms 0; and 05 are called boundary maps. We also define 9y: Cy(X,Z) —
0 the zero homomorphism and therefore have group homomorphisms

Cy(X,Z) 2 01(X,2) 25 Co(X,Z) 2 0.
For §: A — X one has 01(02(6)) = 0 and hence
(8.12.1) By 0y = 0.
Definition and Remark 8.13. Define for i = 0, 1 subgroups of C;(X, Z):
Zi(X,Z) := ker(0;), Bi(X,Z) :==1im(0;+1).

Elements of Z;(X,Z) are called i-cycles. Elements of B;(X,Z) are called i-boundaries.
We have:
(1) Zo(X,Z) = Co(X,Z).
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(2) Z1(X,C) consists of those 1-chains Y., n;7y; such that every point € X one has

E n; = E nq,
1<i<r 1<i<r
=";(0) x=";(1)

i.e., such that every point is as often startpoint as it is an endpoint.
(3) AS 81 e} (92 = 0,
Bi(X,Z) C Z1(X,Z) C C1(X, 7).

For i = 0,1 we call H;(X,Z) := Z;(X,Z)/B;(X,Z) the i-th singular homology group of
X. Two i-chains I', " € C;(X,Z) are called homologous in X, if ' =TI € B;(X,Z). An
i-chain T is called null-homologous in U, if I € B;(X,Z).

Remark 8.14. The map X — mp(X) that sends a point € X to the path component
of X containing z yields an isomorphism Hy(X,Z) = 7m0 (X)) of groups. In other
words: Two points z,2’ € X are homologous if and only z and 2’ lie in the same
path-component of X.

Proof. Exercise O

(D) Homology, winding numbers, and homotopy

Definition 8.15. Let X =V, W = R™ be finite-dimensional R-vector spaces.

(1) A 1-chain T' = nyy; + -+ + nyy, in V is called piecewise Ct if every path ~; with
n; # 0 is piecewise C!.

(2) Let ' =nyy1 +...npy be a 1-chain in V, let w: {I'} — Homg(V, W) be a contin-
uous W-valued 1-form. Assume that I is piecewise C! or that there exists an open
neighborhood U of {T'} and a closed W-valued 1-form @ on U such that @y = w.

Then define .
Jo=Ym[w
r i=1 Yi

(3) Let V=W =C, u € C and let I" be a 1-chain in C\ {u} (i.e. {T'} C C\ {u}).
Then define the winding number

1 1
W= 55 | 7
Tr

dz.

Proposition 8.16. Let U C C be open, and let T',T" € Cy(U,Z) be two 1-chains in U.
Then T' and I are homologous in U if and only if

01(T) = o (T)

() and W(T5u) = W(T';u) VueC\U.

In particular we have for I' € Z1(U,Z):

I' null-homologous in U < W (I';u) =0 YVue C\U.
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The hypothesis “01(T") = 91 (I")” is in particular satisfied if T, T € Z; (U, Z).
In the sequel we will take (*) as a definition of “homologous” and we will not use
Proposition

Proof. W. Fulton: Algebraic Topology, A first course, Springer (1995), Theorem 6.11
+ Exercise 6.13 O

Proposition 8.17. Let X be a topological space and let ~v,~": [0,1] — U be paths in
X. If v and v/ are homotopic, then v and v are homologous.

There exist open subsets U of C and loops in U that are null-homologous in U but not
null-homotopic in U.

We will prove the proposition only if X = U is open in C. For a proof that works in
the general case, see: W. Fulton: Algebraic Topology, A first course, Springer (1995),
Lemma 6.4.

Proof. If v and +/ are homotopic in U, then

() =~v(1) =v(0) =+'(1) =~'(0) = &1 (7) € Co(U, Z).

Moreover, Cauchy’s theorem (Theorem [4.11)) shows that W (y;u) = W(v/;u) for u €
C\ U. Therefore Proposition shows that v and + are homologous. O

Remark 8.18. Let X be a topological space. Proposition [8.17] shows that we obtain
for g € X a well defined map

(8.18.1) h:= hX,Io: 7T1(X,l‘0)—>H1(X,Z), [")/] '—>’Y+Bl(U,Z)

We claim that this is a group homomorphism. We show the claim again only if X = U
is open in C. For ~,d € m1(U, zg) the loop = -0 and the 1-cycle v + ¢ have the same
winding numbers and hence they are homologous. This shows that hy g, is a group
homomorphism.

Proposition 8.19. Let X be a path-connected topological space, let x € X. Consider

the group homomorphism hx : m(X,z) — H1(X,Z) (8.18.1).

(1) hxg is surjective

(2) Its kernel of hx is the derived group m (X, x)% of w1 (X, ), i.e. the subgroup
generated by y0y 1071 for v,0 € m (X, x).

Therefore hx , induces an isomorphism of abelian groups

m (X, 2)* o= m (X, 2)/m (X, )% 5 Hi(X,2).
Proof. We will only prove (and use in the sequel) the surjectivity of hx , (for a proof
of Assertion (2) see: W. Fulton: Algebraic Topology, A first course, Springer (1995),
Theorem 12.22).
Let ' =71 nivi € Z1(X,Z), where n; € Z and +; a path with startpoint p; € X and
endpoint ¢; € X. For each point ¢ € X that occurs as an endpoint or as a startpoint of
any -;, choose a path 7, from x to ¢ (this is possible because X is path connected). Set

Vi = Tp Vi Tg,
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This is a loop with startpoint z. Let [%;] € w1 (X, z) be its homotopy class and let
vi= " ]t e m(X, x).

Then hx , sends vy to the following element in Hy (X, Z):

T T r
~ I'ez
E :ni%: E ni(_TQi+7i+TPi) £t § ni%:reHl(X,Z)
=1 =1 i=1

This shows the surjectivity of hx . O
Corollary 8.20. Let X be a simply connected topological space. Then Hy(X,Z) = 0.

Proof. Choose x € X. X simply connected < m1(X,z) = 0, hence Hi(X,Z) = 0 by
Proposition [8:19} O

Corollary 8.21. Let G C C be a domain. Then every 1-cycle in Z1(G,Z) is homolo-
gous to a piecewise C'-loop in G.

Proof. By Proposition every l-cycle in G is homologous to a loop in G. Every
loop 7 in G is homotopic in G to a piecewise C'-loop 7' (Remark [3.15). In particular
~ is homologous to ~'. O

Proposition 8.22. Let I € Z,(C,Z).

(1) W(T;u) € Z.

(2) The map C\{T'} = Z, u— W(T';u) is locally constant.

(3) Let G C C\{T'} be an unbounded path component. Then W(I';u) =0 for allu € G.

Proof. (1),(3). Applying Corollary for G = C\ {u} we may assume that I' is a
loop. Hence this follows from Proposition [8.7}

(2). 1t suffices to show that for all u € C\ {I'} there exists > 0 with B,(u) C C\ {I'}
such that B,.(u) — Z, z — W(T'; 2) is constant. Using Corollaryfor G =C\ B,(u)
we may assume that I' is a loop. Then we are again done by Proposition 8.7 O

Remark 8.23. Let U C C be open and I' € Z;(U,Z). Then {I'} is compact and hence
{T'} C Bg(0) for some R € R>?. Then Remark implies

{ueC\{T}; W(Isu) # 0} € Br(0).
In particular, it is compact.

Example 8.24. Let u € C and set G := C \ {u}.
(1) As W(I';u) = 0 for all T' € B1(G,Z) (Proposition [8.16]), we obtain a group homo-
morphism

W(su): H(G,Z) = Z, I'— W(T;u).

This homomorphism is surjective because ndBi(u) € Z1(G, Z) has winding number
n for all n € Z.
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(2) Choose zy € G. We obtain a surjective group homomorphisms
(G, 20) == H1(G,7) " 7.

By Proposition the composition m(G,Z) — Z is an isomorphism of groups.
Hence h and W (-;u) are isomorphisms. Hence

7T1(G, Zo) = Hl(G,Z) = 7.

Example 8.25. Let U C C be open. Let I' € By1(U,Z) (e.g., if U is simply connected
and I' € Z1(U,C)). Let z1,...,z, € U\ {I'} be distinct points and for i = 1,...,m
choose 7; € R*Y such that B,,(z;) C U. Assume that By, (z;) N By, (z;) = 0 for i # j.
Then T is homologous in U* :=U \ {z1,...,2z,} to

> W(I';2)0B, ().
i=1

Proof. Set n; :== W(I';2;) and v; = 0B,,(2;) for i = 1,...,m. We have to show that
W(Tsu) =>" niW(yi;u) forallu e C\U* = (C\U)U{z1,...,2m}.

For w € C\ U we have W(I';u) = 0 by hypothesis and we have W (;;u) = 0 for all ¢
because u is outside every circle ;. Hence

W(Tiu) =0="> W(y;u).

ng

If u = zj, for some k, then W (~;, zx) = 1 for i« = k and 0 for i # k. Hence

W(F; Zk) = Nk = Z TLZ'W(")/Z‘; Zk) O
=1

(E) Cauchy’s theorem, homology version

Theorem 8.26 (Cauchy integral formula, homology version). Let U C C be
open, let T' € B1(U,Z), and let f: U — C be holomorphic. Let zo € U with zy ¢ {I'}.
Then for alln € N one has

n!

(*) W(T; 20) ™ (20) = = / : &,

2mi ) (2 — zo)"H T
r

Proof. (i). We may assume that n = 0: the general claim follows by differentiating

under the integral sign (Proposition [4.10|). Then the left hand side of (*) has the form
1 f(z0)

2mi JI' z—2zg

dz. Hence we have to prove:

h()(Zo) ::/f(zi:go(zo)dz =0
T

for zo € U\ {T'}.
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(ii). Define
f@)—fw) .
g:UxU — C, g(z,w) = o 2 FW;
f/(Z), Z=w.

Then ¢ is continuous (Analysis 2). Moreover, U — C, w — g(z,w) is continuous and
holomorphic on U \ {z}. Thus it is holomorphic by Theorem
(i4i). Consider the continuous function

ho: U — C, ho(w) = /g(z,w) dz.
r

It suffices to show that hg = 0.
We first claim that hg is holomorphic. This is a local question. Hence choose for all
20 € U a disc B,(20) C U and let v be a piecewise C!-loop in B,(zg). Then

/ho(w) dw://g(z,w) dzdw 2™ //g(z,w)dwdz “ g
v T r o~

v

because w — ¢(z,w) is holomorphic. Hence hg is holomorphic on B (zp) by Corol-
lary

(iv). Extend hg to an entire function: Let V := {z € C\ {I'} ; W(I';z) = 0}. As
I' e B1(U,Z), we have U UV = C. Define

Z—w

hi: V= C, hi(w) ::/ /(z) dz.

T

This is a holomorphic function by Lemma For w € UNV we have

ho(w) = [ - E’Zij dz — f(w)2miW (T;w) = hy (w).
I

Hence hg can be extended to an entire function h: C — C by setting

h(z) = {ho(z)’ for z € U;

hi(z), forzeV.

(v). Show h = 0: For all w in the unbounded path component of C \ {I'} we have
W(T;w) = 0 (Remark [8.22). Hence there exists C € RZY depending only on I' and
| f ||r[| such that we have for large |w|:

1 |w|—o00
h = |h < C|—— 0.
h(w)] = ()] < O =y "5

Hence h = 0 by Liouville’s theorem (Corollary [5.18]). O
s ze{l'}t}

"Here | f| := sup{ |f(z)
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Theorem 8.27 (Cauchy’s theorem, homology version). Let U C C be open and
letT € Z1(U,Z) be a 1-cycle in U. Then the following assertions are equivalent.

(i) ' € B1(U,Z) (i.e., I' is nullhomologous in U ).

(ii) For all holomorphic functions f: U — C one has

F/fdz:o.

(iii) For alln > 1 and all closed R™-valued 1-forms w on U one has

Je=o

r
Proof. We will only show (und later use) the equivalence of (i) and (ii).
“(ii) = (1)”: For all w € C\ U we have
1 i
W (Tsu) = / i @ o
zZ—u
r

“i) = (ii)”: Let f: U — C be holomorphic. Let a € U \ {I'}. Then F: U — C,
F(z) = (2 —a) f(z) is holomorphic with F'(a) = 0. Hence by Theorem we have
1 F(z) 1
O—W(F,a)F(a)—% Z_adz—m/f(z)dz. O
r r

Corollary 8.28. Let U C C be open, f: U — C holomorphic, and let T',T" € C1(U,Z)
be 1-chains. If T and I are homologous, then

/f(z) dz:/f(z) dz.
T IV

Remark 8.29 (Poincaré duality). Let U C C be open. Set
HjR (U,C) := {C-valued closed 1-forms on U}/{C-valued exact C* 1-forms on U}.

Define H; (U, C) as homology classes of cycles which are C-linear combinations of paths.
Then Theorem 2.28 and Theorem [8.27] show that the bilinear form

H\(U,C) x H5,(U,C) > C,  (T,w) > /w
I

is well-defined and non-degenerate. In particular we have an injective C-linear map
(8.29.1) Hpg(U,C) = Home(Hy (U,C),C),  w (T'+— /w).

r
Note that these spaces are not necessarily finite-dimensional (consider the example
U:=C\Z).

One can show that (8.29.1)) is an isomorphism (e.g., W. Fulton: Algebraic Topology, A
first Course, Springer (1995), Theorem 15.11).
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9 Isolated singularities and meromorphic functions

(A) Laurent series

Definition 9.1. Let 29 € C. A Laurent series in zg is a series of the form

o0

() S anlz - 20)",

n=—oo

more precisely, it is a pair of two series

Z an(z —20)" called regular part (German: Nebenteil)
n=0

—0o0 [e.9]
Z an(z — z9)" = Z a_n(z—29)"" called principal part (German: Hauptteil).
n=1

n=-—1

Let A C C be a subset. If these two series converge absolutely for z € A (resp. converges
locally uniformly in z on A) we say that (*) converges absolutely (resp. converges locally
uniformly) on A. If that is the case, we also denote by > .°C _ a,(z — 20)" the sum

n=—00
2720:0 an(z - ZO)n + Z;io_1 an(z - ZO)n'

Proposition 9.2. Let 20 € C, let0 <r < R< o0, andlet A:={z€C; r <|z—z| <
R} be the annulus centered at zy with inner radius r and outer radius R. Let f: A — C
be a holomorphic function. Then f has a Laurent series expansion

oo

F) =3 anlz -z

n=—0oo

which converges absolutely and locally uniformly on A. For all p € R withr < p < R
and for all n € Z we have

_ 1 f(z)
(9.2.1) ap = — / o=z dz
9By(20)

and the Cauchy inequalities

(9.2.2) lan] < 07" flo8,(0)-

We will see: Regular part converges on {z € C ; |z — 29| < R}, and the principal part
converges on { z € C; |z — 29| > 1 }.

Proof. We may assume that zg = 0. Choose r’ and R’ such that r < ' < R’ < R. Then
the loops 0B,/(0) and 0Bpg/(0) are homologous in A, hence I' := 0Br/(0) — 0B,+(0) €
Bi(A,Z). As z — Zfﬁ)l is holomorphic in A, Cauchy’s theorem shows that is
independant of p.
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Moreover, Theorem gives for w with 7’ < |w| < R":

F(w) = W(T;w) f(w) = 1,

27rz z—
21 Z—w
aBR, 9B,(0)
:Zfreg(w) :ifprinc (w)

By homotopy invariance freg is independent of R’ as long as |w| < R’ < R. Therefore
freg can be extended holomorphically to Bg(0). The same argument shows that fprinc
can be extended holomorphically to {w € C ; |w| > r }.

By the Cauchy formula for discs (Theorem [5.8) we get freg(w) = Y00y apw™ with a,,

as in (9.2.1]) for n > 0.

To handle fprinc(w) we choose ' with r < ' < |w| and write

z—w:—w(l—i).
w

For z € 0B,/(0) we have |z/w| < 1, so the geometric series

1 1 X wn
W m*"z() -2 e

converges. We can exchange the order of summation and integration and obtain

o0

1 f(2) n
forine(w) = > | 5= S dz |
n=-1 8B (0)

Finally, (9.2.2)) follows from ({9.2.1]) by using the standard estimate of path integrals. [

Example 9.3. Consider the holomorphic function
1

f:C\{0,1} — C, f(z):m.

(1) The Laurent series expansion in 0 on the annulus {z € C; 0 < |z| < 1} is given

by
fe=tg-i= - A

N~~~ n=0
principal part e

regular part

(2) On the annulus { z € C ; |z| > 1} the Laurent series expansion in 0 is given by

—00

111 oz 1 (1" n
f(z)_zzl—l/z B 22;(,2) _ZZ'

n=-—2
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(B) Isolated singularities

Definition 9.4. Let U C C be open, zp € U. If f: U\ {20} — C is holomorphic, then
zp is called isolated singularity of f.

Theorem and Definition 9.5. Let U C C be open, zo € U and let f: U\ {2} — C
be holomorphic. Let r € R>% with B,(z0) C U, and let

o0

) f2)=Y anlz—z20)"

n=—oo

be the Laurent series expansion of f on the annulus By(z9) \ {z0}. Then exactly one of
the following cases occur.
(a) The following equivalent conditions are satisfied.

(i) an =0 for alln <0, i.e., the principal part of (*) is zero.

(ii) There exists a (necessarily unique) holomorphic function f: U — C such that
Flovgzor = -

(iii) f is bounded in some neighborhood of z.

In this case zg is called a removable singularity of f.

(b) The following equivalent conditions are satisfied.

(i) There exists k € N such that a_i, # 0 and a,, =0 for all n < —k.

(ii) There exists k € N and a holomorphic function h: U — C with h(zp) # 0 such
that

f(2) = (z — 20) " *h(2) for all z € U\ {20}

(iii) One has lim,_,,, |f(z)| = oco.
Moreover the integers k in (i) and in (ii) are equal.
In this case zy is called a pole of f. The integer k € N is called the order of the
pole zg.
(¢) The following equivalent conditions are satisfied (Casorati-Weierstraf)
(i) There exist infinitely many n € Z<° with a, # 0.
(ii) For everywy € C there exists a sequence (zp,)p, in U\{z0} such thatlim,, z, = 2o
and lim,, f(zn) = wo.
In this case zgy is called an essential singularity of f.

Proof. We may assume that zgp = 0. Clearly exactly one of the conditions (a), (b), or
(c) is satisfied.

(a). “(i) & (ii)”: Clear, as holomorphic functions are analytic.

“(ii) < (iii)”: Riemann extension theorem (Theorem [5.13).

(b). “(i) < (ii)”: Condition (i) means that the Laurent series expansion is of the form

o0
f)=apz P tapnz " 4 taz ) a”

n=0

with a_j, # 0. Hence (i) and (ii) are equivalent.
“(if) = (iii)": Clear.
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“(iii) = (ii)”: We have to show that 0 is a removable singularity of z r 2¥f(z).
For this we may make U smaller and can assume that f(z) # 0 for z € U \ {0}.
Then g := 1/f: U \ {0} — C is holomorphic and nonzero, and lim, o |f(z)| = oo
implies lim,_,¢ |g(z)| = 0. By the Riemann extension theorem, g can be extended to
a holomorphic function on U, again called g. After again making U smaller, we may
assume that the power series expansion g(z) = Y > b,2" of g in 0 converges on U.
Set k :=inf{n € Ng ; b, #0}. Then

where & is holomorphic on U and h(0) # 0. Thus & is nonzero on U and hence h := 1/h
is holomorphic on U with h(z) = 2¥ f(2).

(c). “(i) = (i)”: If (i) is satisfied, zp cannot be a removable singularity or a pole as
we have already shown. Hence (i) has to be satisfied.

“(i) = (i)”: Assume that (ii) does not hold, i.e., there exist wg € C and p,e > 0 such
that | f(z) — wo| > ¢ for all z with 0 < |z| < p. The function

g:{zeC; 0<z]<p}—C, g9(z) ==

is thus holomorphic and bounded by 1/¢. By the Riemann extension theorem, g can be
extended holomorphically to B,(0). But then f = wg+1/g has a removable singularity
(if g(0) # 0) or a pole (if g(0) = 0) at 0. O

Definition and Remark 9.6. Let U C C be open, zp € U. Let f: U\ {20} — C be
holomorphic and let f(z) = > 7 an(z — 20)" be the Laurent series expansion of f
in zg. Assume that 2 is a removable singularity or a pole of f. Then

ord,, (f) :==inf{k€Z; ar #0} € ZU {0}

is called the order of f in zg.
(1) Assume ord,,(f) < co. Then

f(z)

ord,, (f) =sup{l €Z; z— = 20)

has a removable singularity in zp}

= unique integer k € Z such that lim L)k exists in C\ {0}.
z—2z0 (2 — zo)

(2) f has a pole in z¢ if and only if ord,,(f) < 0 and in this case the order of the pole
is —ord,, (f).

Example 9.7.
(1) The holomorphic function C* — C, z + exp(1) has an essential singularity in 0:
Its Laurent series expansion in 0 is

0.
Z (—n)!’



(2) Let log: G:=C\{z€R; z< 0} — C be the principal branch of the logarithm
on G (Definition . Then its power series expansion at zg = 1 is given by

X 1yn—1
tog(z) = S EV (o e

n
n=1

for z € Bi(1). Thus G\ {1} - C, z — % has a removable singularity at 1.

(C) Meromorphic functions

Definition 9.8. Let U C C be open. A meromorphic function f on U is a holomorphic
function f: U\ P(f) — C, where P(f) C U is a closed subset such that every z € P(f)
is a pole of f. R

We consider a meromorphic function f on U as amap f: U — C := CU{oo} by setting
f(z) == o0 for z € P(f).

We denote by .# (U) the set of meromorphic functions on U.

Remark 9.9. Let U C C be open.
(1) Every holomorphic function f on U is meromorphic on U (then P(f) = 0).
(2) Let f be meromorphic on U. Then P(f) is discrete and closed in U.

Proof. 1f z is a pole of f, then there exists 2 € W C U open such that fyn (.} is
holomorphic (by definition of “pole”). Thus P(f) N W = {z} which implies {z} is
open in P(f). Therefore P(f) is discrete. O

(3) Let (U;)ier be an open covering of U, and let f: U — C be a map. Then f is
meromorphic if and only if f|y, is meromorphic for all i € I (use that a subset
S C U is closed in U if and only if SN U; is closed in U; for all i € I).

(4) Let f,g € #(U). Define f + g as follows: Note that P(f) U P(g) is again closed
in U and discreteﬂ For z € U\ (P(f) U P(g)) we define (f + g)(2) := f(2) + g(2).
Looking at the Laurent series expansion one sees that for zg € P(f)U P(g)

(a) either zp is a removable singularity of f + g. Then set

(f +9)(0) = i (7 +9)(2).
(b) or zg is a pole of f + g. Then set (f + g)(z0) := oc.

In the same way, one defines the product fg. These definitions make .Z (U) into a
C-algebra.

8 X topological space, Y, Z C X discrete and closed. Then Y U Z is discrete and closed in X. Indeed,
Y U Z is clearly closed. Let x € Y U Z. We have to show that there exists x € W C X open such that
WnN(YUZ)={x}. After possible switching Y and Z we may assume that z € Y. Let € U C X be
open such that UNY = {z}. If € Z then there exist x € V C X open such that VN Z = {z} and
we may take W:=UNV. If ¢ ¢ Z, we may take W := U N (X \ Z) because X \ Z is open in X.

Note that the union of two discrete subspaces is not necessarily discrete: {1/n ; n € N} and {0}
are both discrete subspaces of R, but their union is not discrete.

95



Proposition 9.10. Let U C C be open. Then a function f is meromorphic on U if
and only if for all z € U there exists zy € B,(z9) C U open such that f = g/h, where
g,h: By(20) — C are holomorphic with h # 0 (but of course h(zg) = 0 is possible). In
this case

(9.10.1) ord,(f) = ord;(g) — ord,(h) for all z € By(z0)

One can show that there exist even globally holomorphic functions g, h: U — C such
that f = g/h.

Proof. Let f be meromorphic on U. For all zg € U we may choose B,(zy) such that
f(z) = > 07 pan(z — 20)™ on Br(z0) \ {20}, where k = ord,,(f) € Z. If k > 0, we set
g=fand h=1on B,(20). f k<0, set g:=> 0 an_k(z—20)" and h = (z — z)".
Conversely let zp € U and let g and h as above. Set d := ord,,(g) and e := ord,,(h).
Then g(z) = (z — 20)%G(z) and h(z) = (2 — z0)¢h(z), where (for some 7 > 0)

g, h: B,(z0) = C

holomorphic with §(zo) # 0 # h(zg). By shrinking r we may assume §(z) # 0 # h(z)
for all z € B,(z0). Hence f(z) = (z — z)*¢f(z), where f := §/h is holomorphic with
f (z0) # 0. Therefore f has an isolated singularity of order d — e at zp and thus is
meromorphic on B,(zp). As zy was arbitrary, this shows that f is meromorphic on U

(Remark @). O

Example 9.11. The tangens function tan := 52 is a meromorphic function on C. For

z € C we have (see Exercise 23)
ord,(sin) #0 & sin(z) =0 < zenZ:={rnk; kel},
=0

z—i—7TZ::{g—i—71'/<:; kelZ}.

&z e
2

ord,(cos) # 0 < cos(z)

For z € wn7Z we have sin’(z) = cos(z) # 0 and thus ord,(sin) = 1. Analogously
ord,(cos) = 1 for z € § + 7Z. Therefore:

1, z € T
ord,(tan) = ¢ —1, z € T+ 7Z;
0, otherwise.

(D) Meromorphic functions and the Riemann sphere

We add oo to C and obtain a “complex manifold”. We first define C as topological
space.

Definition and Remark 9.12. We define C := C U {c0}, where cc is some element
not contained in C.

Topology of C: A subset U of C is called open if either U C C and U is open in C or
if oo € U and C \ U is a compact subspace of C. It is easy to check that this defines a
topology on C.
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For a sequence (zy), of complex numbers we then have:

lim z, =00 inC
n—oo

< VK C C compact : {n ; z, € K} is finite
S VReR: {n; 2, € Br(0)} is finite

& lim |z,| = oo.
n—oo

Example 9.13. The function

1/z, z#0,00;
i:@—ﬂa, z—1/z:=4q00, 2z2=0;
0, zZ =00

is a homeomorphism with =1 = i.
We imagine C as a sphere:

Remark 9.14. Consider R? with coordinates z1, 2, and x3, and identify C with the
(z1,x2)-plane by setting C 5 z = x1 + ixa. Let

S? = { (21,22, 23) eR?; a:%—f—x%—{—:z%: 1}

be the 2-sphere, let N := (0,0,1) € S? be its “north pole”, and let ¢: S?\ {N} — C
be the stereographic projection, i.e. (z) is the point at which the line connecting N
and x intersects C. We obtain a homeomorphism

@: 52\{N}—>C, (1’1,1’2,:6’3)'—)

T (x1 +ix2)
whose inverse is given by = + iy — (22 + y? + 1)~ (22, 2y, 2% + y? — 1).
We extend ¢ to a bijection R
¢: 8?2 =>C
by setting ¢(IN) := oo. Then it is easy to check that ¢ is a homeomorphism.

In particular we see that C is compact and path-connected (because S? has these
properties). In fact, it is even simply connected (Exercise 40).

We consider C as “complex manifold of complex dimension 1 with an atlas consisting
of the two charts”

Bo: Uy :=C\ {0} 3C,  y(2)
: U :=C\{0} 3C, & (2)

7

z
1/z.

More precisely:
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Definition 9.15. Let U C C be open. A continuous map f: U — C is called holomor-
phic if for all 7,5 = 0,1 the compositions

—1 .
(U NU; N fHU))) L Uunuin oy Ly B¢

C C open

are holomorphic. R
Let V' C C be open. A bijective map f: U — V is called biholomorphic if f: U — C
and f~!': V — C are holomorphic.

Example 9.16. The map C— @, z + 1/z is biholomorphic.

Proposition 9.17. Let G C C be open and connected. Choose Vo,Vi C G open and
connected such that G = Vo UVy with oo ¢ Vo and 0 ¢ Vy. Let f: G — C be continuous
such that there exists z € G with f(z) # cc.

Then f is a holomorphic map if and only if the two maps

fO:‘/O_}@a ZHf(Z)a
1

fl:{%eC;ze‘ﬁ}—H@ w— f(=)

w
are meromorphic.

Proof. By definition, f is holomorphic if and only if f; is holomorphic (in the sense of
Definition [9.15)). Thus it suffices to show the following proposition. O]

Proposition 9.18. Let G C C be open and connected, f: G — C be a map such that
there exists z € G with f(z) # oco. Then the following assertions are equivalent:

(i) f is meromorphic.

(ii) f is a holomorphic map in the sense of Definition .

Proof. “(i) = (ii)”. Clearly, f|;np(s) is holomorphic. Let zp € P(f). Then The-
orem (b) shows lim,_,,, f(z) = oo. Hence f is at least continuous in zy. More-
over, there exists zop € W C U open such that f(z) ¢ {0,00} for all z € W. Then
g: W\ {z} — C, g(2) = 1/ f(2) is holomorphic with lim,_,., g(z) = 0. Hence g can be
extended holomorphically to zg. This shows that f is a holomorphic map on W in the
sense of Definition

“(ZZ) = (i)”. Set P(f) = {Z e U ; f(Z) = OO} Then f|U\P(f): U \ P(f) —
C is holomorphic by Definition As f is continuous, P(f) is closed in U and
lim,_,,, f(z) = oo for all zg € P(f). Hence it remains to show that P(f) is discrete in
U (= the points of P(f) are poles = f is meromorphic).

Choose zyp € W C U open such that f(z) # 0 for all z € W. Then g: W — C,
z + 1/f(2) is holomorphic and P(f)NW ={ze€ W ; g(z) =0}. Now f # oo implies
g # 0. and hence { z € W ; ¢g(z) =0} is discrete by Proposition O
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10 Calculus of Residues

(A) The residue theorem
Remark 10.1. Let U C C be open, zp € U, f: U \ {20} holomorphic. Let

o0

f()= 3 an(z—2)"

n=—0oo

be its Laurent series expansion at zp. Choose r € R>Y such that B,.(z9) C U. Then the
Laurent series converges on some Bg(zp) for some R > r and we have

/ f(z)dz = Z an / (z — 20)" dz,
OB (z0) =T BB (20)
where we may interchange sum and integral because the series converges locally uni-
formly. But (z — 2p)" has a primitive on U \ {2} for n # —1, namely n%rl(z — zp)" L.

Therefore fv(z — 20)"dz = 0 for every loop v in U \ {20} and for n # —1. Hence we
see that

/ f(z)dz =a_ / (z — 20) tdz = 2mia_.

8B, (z0) 8By (20)

This also follows from (9.2.1]).

Definition 10.2. Let U C C be open, zy € U, f: U \ {20} — C holomorphic with
Laurent series f(z) = Y>> an(z — 20)". Then

n=—oo

res,, (f) == a1 B2 i / f(z)dz

27
0By (20)

is called the residue of f at zy. Here we choose r € R>Y such that B, (z) C U.

For the following theorem we make the following remark. Let U C C be open, let
S C U be discrete and closed, and let I" be a 1-cycle in U which is null-homologous in
U (ie. W(I';u) =0 for all uw € C\ U) such that SN {T'} = 0. Then there are only
finitely many z € S with W (T'; z) # 0. Indeed

I'={zeC\{I'}; W(I'2) #0}

is compact (Remark [8.23)) and contained in U because I is null-homologous in U (Ex-
ercise 34). As S is discrete and closed in U, SN is a closed and discrete subspace of
I. Therefore it is a discrete and compact space and hence finite.

Theorem 10.3 (Residue theorem). Let U C C be open, let S C U be discrete
and closed, let f: U\ S — C be holomorphic. Let I' be a 1-cycle in U which is null-
homologous in U such that SN{T'} = 0. Then

/f(z) dz = 2772'2 W(T; z) res,(f).
r

z€S
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Recall that a 1-cycle in U is automatically null-homologous if U is simply connected.

Proof. Let " = {z € S; W(T;z) # 0}. Example ahows that ' is homologous

to > .cq W(T', 2)0B:(2) with € > 0 such that B.(z) € U and B.(z) N B:(2') = 0 for
2,2/ € 8" with z # 2. Hence

[1@a: = ww) [ e
r 2€5 9B.(z)
27riZW(F;z) res, (f) O
z€S
Remark 10.4. Let U C C be open, 29 € U, f,g: U\ {z0} — C be holomorphic,

f)= ) alz==0)",  9(z)= D balz—z)"

their Laurent series expansions.
(1) For a € C one has
res;, (af + g) = ares,, (f) + ress (9)-
(2) Assume that f and g are meromorphic on U, i.e. there exist only finitely many
r < 0 with a, # 0 or b, # 0. The Laurent series converge absolutely, we have by
Cauchy’s formula

o0

*) @) = Y az—z)" = S akh

n=-—o00 k,l€Z
k+l=n

where the sum is finite because of our assumption. In particular:
res,, (fg) = Z agby.
k+l=—1

(3) Assume that f has a pole of order 1 at zp and that g is holomorphic in zy (more
precisely, g can be extended holomorphically into zp). Then (2) shows

res;, (fg) = a—1bo = g(z0) res;, (f).

(4) Assume that f has a zero of order 1 in 2y and that g is holomorphic in zp. Then
the —1-st coefficient of the Laurent series of 1/f is 1/a; = 1/f'(20) by (*), hence
by :

res,, & = 9(=0)
[ f'(%0)

Example 10.5. (1)
sin(m/2)

cos/(/2) =1

res;  tan(z) =

(2)

1 2 11
C02§Z) -2 <1 - % +.. > =23 35 + terms of higher order.

Hence reso(cozsgz)) =0.
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(B) Counting zeros

Proposition 10.6. Let U C C be open, f: U — C meromorphic, zop € U. Iford,,(f) <

oo, then
/

ord,, (f) = ress, L
f
Proof. Exercise O

Proposition 10.7. Let U C C be open, f: U — C meromorphic, set

Z2()={z€C; fz) =0},  P(f)={z€C; f(z) =00}
Let T be a null-homologous cycle in U such that {T} N (P(f)UZ(f)) =0. Then

o [ L= Y wEedn - Y WiTiwond,().

T uelU ueP(fIUZ(f)

Note that W (I';u) = 0 for all but finitely many v € P(f) U Z(f) because P(f) U Z(f)
is discrete and closed in U (see the remark before the Residue theorem).

Proof. Residue theorem + Proposition [10.6 O

(C) Limits and fibers

Definition 10.8. Let G C C be a domain, f: G — C meromorphic. Assume that f is
not constant. For w € C we set

Ny(w):= > ord.(f(z) —w) € NgU{oo}.
z€G
fz)=w
In other words: Ny(w) is the number of z € G with f(z) = w (w-places) with multi-
plicity.

Proposition 10.9. Let G C C be a domain, and let (fy,), be a sequence of holomorphic
functions fn,: G — C that converges locally uniformly against f: G — C. Let k € Ny
and w € C and assume that Ny, (w) < k for alln € N. Then either f = w constant or
Ny(w) < k.

Proof. By Weierstraf3’ theorem of convergence (Theorem we know that f is holo-
morphic. We may assume that w = 0 (replace f, by f, — w). Assume that f # 0 but
there exist z1,..., 2, € Gwith )", ord,,(f) > k. Theset Z(f) :={z€ G; f(z) =0}
is discrete, hence there exist discs D; = B, (2;) such that D; C G and D;NZ(f) = {2}
for all i. Now choose £ > 0 such that € < |f(z)| for all z in the compact set (J;~, dD;.
As (fn)n converges uniformly on compact sets towards f, there exists n € N such that

1f(z) = fa(2)] <& <[f(2)]

for all z € (J"; 0D;. By Rouché’s theorem, f and f, have the same number of zeros
in J;", D; (with multiplicity). Contradiction. O
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Corollary 10.10. Let G C C be a domain, and let (fy,), be a sequence of holomorphic
functions f,: G — C that converges locally uniformly against f: G — C. If all f, are
injective, then f is either injective or constant.

Proof. 1st proof. This follows from Proposition because
[ is injective & Ny(w) <1 for all w € C.

Here “<” is clear. Conversely, let f be injective and assume that there exists w € C
such that Ny(w) > 1. Then w = f(z9) for some zg € G such that ord,,(f — f(z0)) > 1.
By restricting to an open nieghborhood of zy and by precomposing with a biholomorphic
map (under both operations f stays injective), we may assume that f(z) = f(z0) + 2"
with 7 = ord,, (f — f(20)) > 1 (Theorem [7.3). But this map is clearly not injective.
Contradiction.

2nd proof. A different argument goes as follows: f, is injective if and only if for all
a € G the holomorphic function g, := gn: G\ {a} — C, z — fn(z) — fn(a) has
no zero (i.e. Ny, (0) = 0). As (gn)n converges locally uniformly to g,: G \ {a} — C,
z > f(z) — f(a), Proposition [10.9) implies for all a € G that either g, = 0 or that g has
no zero. If there exists a € G such that g, = 0, then f is constant and g, = 0 for all
a € (G. Hence otherwise g, has no zero for all a € G and hence f is injective. O

(D) Application: Fourier transform

Motivation: Let G be a locally compact abelian topological group (e.g. G = (R, +)
or G = (S',) with S' = {2z € C; |2|] = 1}). Let ug be a translation invariant
measure on the Borel o-algebra B(G) of G, a so-called Haar measure (e.g. ug = A! the
Lebesgue measure, or jg1 the image of A! under the map [0, 1] — S, 2 — exp(2miz)).
Let G := Homgy(G, S') (Pontryagin dual).

Let f € LY(G,B(G), ug; C). Define its Fourier transform

00 = / X0 £(t) dpc(t)
G

Examples:
(1) For G = S* one has an isomorphism

Z s G = Hom(S", S1), n— (z—2z"")

and for f: S — C integrable:

1

f(n) = /t”f(t) dugt = /ezmntf(e%it) dt, nez

St 0

cf. Proseminar on Fourier analysis.
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(2) For G = R one has an isomorphism
R+— G =Hom(R,SY), 7 (t— e 27,

and hence for f: R — R integrable:

f(r) = / e 2T E() dAY (L), T ER.
R
Interpretation: Let (¢t — f(t)) € L'(R) be a time-dependent function (¢ measured
in seconds). Then f(7) measures whether the frequency |7| (7 measured in hertz) is
present in f.

Theorem 10.11. Let f be meromorphic on C such that P(f) is finite and P(f)NR = 0.
Assume that there exists a constant M € R such that

M
[f(2)] < i
for |z| sufficiently large. Let 7 € R<C. Then
o0
/ e 2T f (1) dt = 2mi Z res, (e 2™ £(2)),
% z€H

where H := {z € C ; Im(z) > 0} is the upper half plane.

Proof. For simplicity, take 7 = —1 (the proof in the general case is the same). Let
A, B € R>? and set D := A + B. By the residue theorem we have for A and B
sufficiently large

2mi Z res, (2™ f(2)) = / > f(2) dz.

zeH

“A,_A1iD,B1iD,B,—A

It suffices to show that the integral over the three sides other than the bottom side
of this rectangle tend to 0 as A, B tend to infinity. For this we first note that for
x = Re(z) and y = Im(z) we have

627rzz _ e27rm€—27ry.

For the top side of the rectangle we have

B

- / €277 [(2) dz| = | / 227D £(0 4 i D) daf
—A+iD,B+iD -A
B

< e 2D / |f(x +iD)| dx

~A
< 67271'D%(A + B) _ M€727r(A+B)
A,B—o0

— 0
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For the right side we have

2™ B e (B + iy) dy|

[ e

I
OQG

B+iD,B

u D
<= [e ™4
<M frmg

0

M
- (1— —27D

gl
A,B—o0

0.
A similar estimate shows that the integral over the left side tends to 0. O

11 Riemann mapping theorem

Notation: In this section we let E := {z € C; |z| < 1} be the open unit disc and
H:={z € C; Im(z) >0} the upper half plane.

(A) Automorphisms of the disc and of the upper half plane

Definition 11.1. Let U C C be open. A biholomorphic automorphism of U is a
biholomorphic map f: U — U. We denote by Autpe(U) the set of biholomorphic
automorphisms of U, endowed with a group structure by composition:

Authol(U) X Authol(U) — Authol(U), (f,g) — f 0g.

Example 11.2.

(1) Fora,b € C,a # 0, the maps C — C, z — az+b are biholomorphic automorphismﬂ

(2) For all ¢ € R the rotations z — €'¥z by the angle ¢ are biholomorphic automor-
phisms of B, (0) for all > 0.

Proposition 11.3 (Schwarz lemma). Let f: E — E be holomorphic with f(0) = 0.
Then

(1) |f(2)] < |z| for all z € E.

(2) If there exists 0 # zy € E with |f(z0)| = |20, then f is a rotation.

(3) 1f'(0)| <1, and if equality holds, then f is a rotation.

91n fact, these are the only biholomorphic automorphisms of C: If f: C — C is any automorphism
of C, then f is a homeomorphism. Thus for all R € R”?, f~'(Bg(0)) is compact. In other words: If
we define f: C — C by f(2) := f(2) for z € C and f(c0) := oo, then for every open neighborhood U
of oo in @, f_l(U) is an open neighborhood of co. This shows that f is continuous in oo and hence a
holomorphic map C - C. By Exercise 41(e), f is of the form z — 22t% with (¢%) € GL2(C). As f

cz+d

has no pole in C, one has ¢ = 0 and hence f is of the form z + (a/d) + (b/d)z.
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Proof. (1). f(0) =0 = ordo(f) > 1 = ordo(f(2)/2) = ordo(f) — ordo(z) = ordo(f) —
1 > 0. Thus z — g(z) := f(z)/z is holomorphic in E with ¢g(0) = f/(0). Let r < 1.
For z € 9B,(0) one has |g(z)| < 1/r (because |f(z)| < 1). By Corollary we have
lg(2)| < 1/r for all z € B,(0). Letting r — 1 gives (a).

(2).

|f(20)] = |20] @ |g| has a maximum in E
g is constant

= f(z) = cz for some ¢ € C
lf(ZOA:‘Zd ‘C’ -1

(3). (1) = |g(z)] < 1 for all z € E and hence |g(0)] = |f/(0)] < 1. If equality
holds, g = ¢ for some constant ¢ € C by the maximum principle. Then [g(0)| =1 =
le| = 1. O

Corollary 11.4. Let f: E — E be a biholomorphic automorphism with f(0) = 0. Then
f is a rotation.

Proof. f(0) = 0 and f~1(0) = 0. Applying the Proposition m (1) to f and f~!
implies |f(z)| = |z| for all z € E. Hence Proposition [I1.3] (2) implies that f is a
rotation. O

Proposition 11.5. Let f: E — E be a biholomorphic automorphism. Then there exist
v €R and a € E such that

*) flz) = et
Proof. For a € E define

a—z
11.5.1 o' E ) o(2) = —
(11.5.1) R R A N O

(1). Claim: v, is a biholomorphic automorphism E — E (and hence f as in (*) is a
biholomorphic automorphism); see Exercise 27 (b).
For u € C with |u| = 1 write u = /. Then

0
0N a—é . oW . L i0
@Da(el)—m—elg, Wlthw.—olfel.
Therefore |1, (u)| = 1. Hence ¢, (2) € E for all z € E (Corollary [7.11)).

Moreover 1), is its own inverse: For z € E we have

o — 1Oi_o7zz
(Yo 0 Ya)(2) = T go—=z
1—az




(ii). Now let f: E — E be a biholomorphic automorphism. Then there exists a € E
such that f(a) = 0. Thus g := f o1, is a biholomorphic automorphism of E with
g(0) = 0, hence g(z) = ¢*°z for some ¢ € R (Corollary [11.4) and thus

f=g09." =goa. D
Proposition and Definition 11.6. The map

zZ—1
z+1

fH—=E, f(z):=

is biholomorphic. It is called the Cayley map.

Proof. Clearly f is holomorphic. Moreover for z € H, we have |z — i| < |z + i|, thus f
maps H to E. We claim that

d4+w

- E =
GE=C  glw)=i—

yields an inverse of f.
We first show g(w) € H for w € E: Let w = u + iv with u,v € R. Then

Im(g(w)) = Re (%)
(e
1 —u? 402

= —5——>5>0
(14 u)? + v?

since w € E and hence u? < 1. Moreover for w € E,

i(%—l) l1+w—-1+w
Flgw)) = Sw = _ t_y,
(2 4+1) l14+w+l-w
and similarly g(f(z)) = z for z € ]Hm O

Remark 11.7. Let U,V C C be open, and let F': U — V be biholomorphic. Then
F*: Autpo (V) — Autpo(U), a— FloaoF

is an isomorphism of groups whose inverse is given by 8+ F o o F~1,

Theorem 11.8. For M = (9%) € SLy(R) the map

az+b

: H
v — C, z»—)CZer

19One can also show that GL2(C) — Autpe(C), M := (%) = (fu:z— ‘ZZZIZ) is a group homo-
morphism and for M, N € GL2(C) we have fy = fny if M = AN for some A € C*. Then the Cayley
map is far for M = (% 7) with inverse fy with N = % (fl {)
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yields a biholomorphic automorphism of H, and every biholomorphic automorphism of
H is of this form. More precisely, the map

a: SLQ(R) — Authol(]HI), M — fur

is a surjective group homomorphism with kernel pa == {(39), (' )}
Finally, for all z,w € H there exists M € SLa(R) such that fy(z) = w.

Therefore we see that Autpe(H) = PSLy(R) := SLa(R)/u2. The last assertion means
that SLa(R) acts transitively on H.

Proof. (i). For M = (2%) € SLy(R) and z € H we have

ad — bc)Im(z
) tm(fu(2)) = 2R 0
hence fy(H) C H.
(i1). For M, M’ € SLa(R) one has fas o farr = farae (straightforward calculation).
Hence fjs is an automorphism with inverse f;;-1 and M — fj is a group homomor-
phism SLa(R) — Autper (H).
(iii). Let F: H — E be the Cayley map, thus F' = fo with C' = (% 7) For ¢ € R let
ry: E— K, 2 — €'z be the rotation by ¢ € R. Then

* . cos —sinf
F (71(,0) = fM97 with Mg = <sin0 COSQ )) 9 — _@/2

by an easy calculation (use r, = fr, with R, = (68" ?) and CMy = ei9R¢C, hence
fco fuy = [r, 0 fo).
(iv). Proof of the last assertion: It suffices to show that for all z € H there exists
M = M, € SLy(R) such that fy;(z) = i (then szzlsz(z) = w for z,w € H). Let
c € R such that ¢ = Im(2)/|z|> and set M; := (8 *0071) € SLa(R). Then (*) shows
that Im(far, (2)) = 1, say far,(2) = u+ i with u € R. For My = (§ 7*) € SLao(R) we
have fyr, (w) = w — w in particular

N (2) 2 oy (fany(2) = uti = u =i
(v). “M — fpris surjective”: Let f € Autyo(H) and let g € H with f(8) =i. By (iv)
there exists N € SLy(R) with fy(i) = 5. Therefore g := f o fy satisfies g(i) = ¢ and
FogoF~! € Autyy(E) fixes 0. Thus F o go F~!is a rotation and hence g = fy, for
some 0 € R by (iii). Therefore f = fy; n-1.
(vi). “ker(a) = po”: Clearly fas = idy for M € us and hence ps C ker(a). Conversely,
let M = (2%) € SLy(R) with fy; = idg. (iii) shows that fa(i) = ¢ implies a = d and
b = —c. Then an easy calculation shows that fy/(1+¢) = 1+ ¢ implies b = ¢ = 0.
Therefore a = d = +1 because M € SLy(R). O
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(B) The theorem of Arzela-Ascoli

Definition 11.9. Let V be a finite-dimensional R-vector space endowed with some

norm |- |. Let X C V be open. Let (Y,d) be a metric space, C(X,Y) :={f: X —

Y ; f continuous}. Let ® C C(X,Y) be a subset.

(1) @ is called normal if every sequence in ® has a subsequence that converges locally
uniformly (the limit is not necessarily in ®).

(2) ® is called uniformly bounded on compact subspaces if for each compact subspace
K C X the subset { f(2) ; z€ K, f € ®} CY is bounded.

(3) Then @ is called equicontinuous on compact subspaces (German: gleichgradig stetig
auf kompakten Teilrdumen) if for each compact subspace K C X and for all € > 0
there exists § > 0 such that for all z,w € K one has

|z —w| <d=d(f(2), f(w)) <e, for all f € ®.

Theorem 11.10 (Theorem of Arzela-Ascoli). Let V andY be a finite-dimensional
R-vector spaces and let X C V' be open. Endow V and Y with norms |-|. Let ® C
C(X,Y) be a subset. If ® is uniformly bounded and equicontinuous on compact subsets,
then ® is normal.

There are more general and different variants of this theorem, for instance for an arbi-
trary compact space X (e.g., Bourbaki: General topology, Chap. X, §2) but then one
has to be more carefully in the definitions (Definition [11.9)).

Proof. Let (fn)n be a sequence in ®. Choose a sequence (wj)jen in X such that
{wj; j € N} is dense in X (e.g., identify V = R as vector spaces and choose a
numbering of X N Q%). By hypothesis, the set { f,(w;) ; n € N} is bounded in Y and
hence there exists an infinite subset N1 C N such that (fy,(w1))nen, converges in Y.
Continuing the process we obtain for all j € N infinite subsets IN; C NN;_; such that
(fn(w;))nen,; converges in Y. For all m € N choose n,, € Ny, such that n,, — oo for
m — oo and set gn, = fn,, € ®. Then for all j € N the sequence (gm(w;))m>; is a
subsequence of (f,(w;))nen, and hence converges for all j € N.

We claim that (g,)m converges locally uniformly. By Remark it suffices to show
that (g )m converges uniformly on every compact subspace K of X. Let € > 0. Choose
0 > 0 such that for x,y € K one has

lz—yl < 3= 1f() - fy)l <c forall f .

As {wj ; j € N} is dense in X, there exists for all € X a w; with |z —w;| < d; in

other words, X C UjeN Bs(wj). As K is compact, there exists a finite subset J C N

such that K C |J;c; Bs(w;). Pick N € N so large that for n,m > N we have
lgm(wj) = gn(wy)| <e  VjeJ

Let z € K, say z € Bs(w;) for some j € J. Then we have for n,m > N:

l9n(2) = 9m(2)] < lgn(2) = gn(wi)l + lgn(ws) = gm(wi)| + lgm(w;j) — gm ()] < 3e.

Hence (gm|r)m is a Cauchy sequence in the R-vector space C(K;Y) endowed with
the supremum norm. As this space is a Banach space, (gm)m converges uniformly on
K. O
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(C) Montel’s theorem

Theorem 11.11 (Montel’s theorem). Let U C C be open and let & C O(U) =
{f: U — C ; f holomorphic} be a subset which is uniformly bounded. Then ® is
normal.

Remark 11.12. For real analytic functions the analogue of Montel’s theorem is wrong.
Consider f,: (0,1) = R, fu(x) = sin(nz). Then ® = {f, ; n € N} is uniformly
bounded, but there exists no subsequence of (f,,), that converges even pointwise.

Proof of Montel’s theorem. By the Theorem of Arzela-Ascoli it suffices to prove that ®
is equicontinuous on compact subspaces. Let K C U be compact. Choose r € R>? such
that Bs,(z) C U for all z € K. Let z,w € K with |z — w| < r and let v := dBa,(w).
Then for ¢ € {7} one has |( — w| = 2r and |{ — z| > r. Therefore

' 11 ‘_ |z — w| |z — w|
R e R T

Let K’ be the compact set { z € C ; dist(z, K) < 2r} C U. By hypothesis there exists
B € R such that |f(z)] < B for all f € ® and all z € K.
Then Cauchy integral formula yields for all z,w € K with |z —w| < r and for all f € ®:

*)

(—w (—w

() 1 —
< —A4nmrB |z — vl
2T 2r2

=Clz — w| with C := B/r.

1) = 1)l = |5r; [ 100 (20 - 20 ) 46

Hence for all € > 0 we have for § = min{r,e/C} that for all z,w € K and f € ®:
[z —w| <d=1[f(2) = flw)| <e.

Therefore @ is equicontinuous on K. O

(D) Riemann mapping theorem

Definition 11.13. Two open subsets U and U’ of C are called biholomorphic equivalent
or conformal equivalent if there exists a biholomorphic map f: U — U’.

Example 11.14.

(1) We have seen in Proposition that E and H are biholomorphic equivalent.

(2) The open simply connected sets C and E are not biholomorphic equivalent (Liou-
ville’s theorem implies that every holomorphic function C — E is constant).

(3) (1) and (2) imply that C and H are not biholomorphic equivalent.

(4) The domains C\R= and {2 € C; —7 < Im(2) < 7 } are biholomorphc equivalent
via the principal branch of logarithm (Example .
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(5) If G C C is connected (resp. simply connected) and U C C open is biholomorphic
equivalent to G, then U is connected (resp. simply connected).

Theorem 11.15 (Riemann mapping theorem). Let G C C be a simply connected
domain with G # C. Let zg € G. Then there exists a unique biholomorphic map
F: G — E such that

F(z) =0 and  F'(z) € R™C.

Corollary 11.16. Any two simply connected domains G C C and G' C C are biholo-
morphic equivalent.

Proof of the Riemann mapping theorem. (i). Unicity:

Let F1,F>: G — E be biholomorphic maps that satisfy the above conditions. Then
H := Fy o F; ! is an automorphism of E with H(0) = 0. Hence H(z) = ¢**2 for some
¢ € R (Corollary . As H'(0) = F{(0)F5(0)~! € R>? we have ¢ = 1 and hence
Fy = Fs.

(ii). Claim: G is biholomorphic equivalent to an open subset of E that contains 0.
As G # C there exists a € C\ G. Then z — z — « is non-zero on G. As G is simply
connected, there exists a function

L:G—C

with el(®) = 2 — o (Proposition . In particular, L is injective.
Fix w € G. Then there exists € > 0 such that

(*) B:(L(w) + 2mi) N L(G) = 0.

Otherwise there would exist a sequence (zy), in G such that lim, L(z,) = L(w) +
2mi. Applying exp we would obtain lim, z, = w because exp is continuous. Hence
lim,, L(z,) = L(w); contradiction. Now consider

1

F:G—C, F(z):= L(2) = (L(w) £ 2m0)°

As L is injective, F is injective. Hence F': G — F(G) is biholomorphic (Corollary.
By (*) one has |F(z)| < 1/¢ for all z € G, hence F(G) is bounded. We may therefore
translate and rescale F' to obtain a biholomorphic map with 0 € F(G) C E.

(i4i). By (ii) we may assume that 0 € G C E. Define

®:={f: G — E; f holomorphic, injective and f(0) = 0}.

Then ® # () because ® contains the inclusion, and @ is uniformly bounded because all
functions in ® take only values in E. Moreover, (5.8.2)) shows that there exists C € R>?
with |f/(0)] < C for all f € . Hence

s = sup|f'(0).
fed
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exists. We will show that there exists f € ® with |f/(0)| = s.
Choose a sequence (fy,)n in ® such that lim,, |f} (0)] = s. By Montel’s theorem (Theo-
rem , this sequence has a subsequence (fy, )r that converges locally uniformly to
some function f: G — C. By Theorem f is holomorphic and limy, f;, = f. In
particular |f'(0)| = s.
We claim that f € ®: Clearly we have f(0) = 0. Since s > 1 (because z — z is in
®), f is non-constant and hence injective by Corollary By continuity we have
|f(2)] < 1forall z € G and from the maximum modulus principle we see that |f(z)| < 1
for all z € G. This shows the claim.
(iv). Claim: f: G — E is surjective (@ f is biholomorphic).
Assume there exists o € E\ f(G). Consider the automorphism

a—z

@Da:]E_)]Ev d}a(z):l_o_éz'

Then G’ := ¥o(f(G)) C E is simply connected with 0 ¢ G’. Thus there exists a
holomorphic square root function 72: G’ — E, i.e., ro satisfies ro(2)? = 2 for all z € G’

(Remark [6.9). Set 8 :=ry() and define
F:=1gorgot,of:G—E.

Then F' is holomorphic, injective with F'(0) = 0 and hence F' € ®. Set r := || < 1.
Then |B| = /r. (An easy calculation using ¥.(2) = % shows that |F'(0)| =
C|f'(0)| with

r+1
C = |(B)ry () v, (0)] = N 1.
This is a contradiction to the maximality of | f"(0)]. O
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